scholarly journals Interpenetrating Polymer Network Hydrogels Based on Gelatin and PVA by Biocompatible Approaches: Synthesis and Characterization

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Eltjani-Eltahir Hago ◽  
Xinsong Li

In this work, a new approach was introduced to prepare interpenetrating polymer network PVA/GE hydrogels by cross-linking of various concentration gelatin in the presence of transglutaminase enzyme by using the freezing-thawing cycles technique. The effects of freezing-thawing cycles on the properties of morphological characterization, gel fraction, swelling, mechanical, and MTT assay were investigated. The IPN PVA/GE hydrogels showed excellent physical and mechanical Properties. MTT assay data and the fibroblasts culture also showed excellent biocompatibility and good proliferation. This indicates that the IPN hydrogels are stable enough for various biomedical applications.

e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Ying Wu ◽  
Qing Yang ◽  
Yali Gi ◽  
Yueting Zhang

AbstractA novel hydrogel wound dressing with semi-interpenetrating polymer network structure (semi-IPN) was prepared by radical polymerization of acrylic acid with potassium persulfate (K2S2O8) as initiator and N, N'-methylenebisacrylamide (MBA) as cross-linking agent in the presence of chitosan (CTS) and polyvinyl pyrrolidone (PVP). Hydrogels were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). SEM displayed semi- IPN hydrogels' creased surface with some scale-like wrinkles, thus improving the absorptive capability which has been considered as a most important characteristic of wound dressings. It was found that the content of cross-linking agent and the mass ratio of PVP and CTS had much influence on the mechanical properties of the hydrogel, varying from brittle plastics to elastomer due to the different degrees of cross linking. Since tensile strength is partly in inverse ratio to the hydrogel absorbent capability, the article offers an analysis of varying material proportion in order to obtain an optimum properties of the hydrogel wound dressing .


2021 ◽  
Author(s):  
Yufeng Lei ◽  
Anqiang Zhang ◽  
Yaling Lin

Blending polymers has always been a critical strategy toward high-performance materials. By creating interpenetrating polymer network (IPN), the incompatibility of different polymers could be overcome and a favorable bi-continuous phase...


2007 ◽  
Vol 12 (4) ◽  
pp. 574-582 ◽  
Author(s):  
Nelson Heriberto de Almeida Camargo ◽  
O. J. Bellini ◽  
Enori Gemelli ◽  
M. Tomiyama

Nanostructured materials have been largely studied in the last few years because they have a great potential to applications in different fields like physics, chemistry, biology, mechanic and medicine. Synthesis and characterization of nanostructured materials is a subject of great interest involving science, market, politicians, government and society. The nanostructured materials are in demand in biomedical area, mainly the bioceramics composed of calcium phosphates (Ca/P), which have an excellent biocompatibility and mineralogical characteristics similar to those of bones. The aim of this work was to optimize the method of powder synthesis of nanostructured calcium phosphate and of nanocomposites composed of calcium phosphate//SiO2n, containing 5, 10 and 15% (in volume) of nanometric silica (SiO2n). The results are expressed according to the method of synthesis, mineralogical and morphological characterization, and thermal behavior for the different compositions of the nanostructured powder synthesized.


Author(s):  
Inna Slepchuk ◽  
Olga Ya. Semeshko ◽  
Yuliya G. Saribekova ◽  
Irina N. Kulish ◽  
Igor V. Gorokhov

Results of study of influence of amount of functional groups of glycidyl ethers on characteristics of the spatial grid of crosslinked polyurethane polymer are presented. Parameters of a three-dimensional spatial grid of investigated samples of polymeric films and their physical and mechanical properties were determined by a method of equilibrium swelling in organic solvents.


2020 ◽  
Vol 65 (5) ◽  
pp. 446
Author(s):  
O. Nadtoka ◽  
N. Kutsevol ◽  
T. Bezugla ◽  
P. Virych ◽  
A. Naumenko

Polyacrylamide and dextran-graft-polyacrylamide hydrogels are prepared and used as nanoreactors and networks for the synthesis of silver nanoparticles (AgNPs). Photochemical generation of AgNPs is carried out under UV-irradiation of Ag+ ions in swollen hydrogels of different cross-linking densities. The obtained hydrogels and hydrogel/AgNPs composites are characterized by TEM, FTIR, and UV–Vis spectroscopy. Swelling studies have shown a relationship between the structure of the hydrogels and their ability to swell. It is shown that the presence of AgNPs in the polymer network leads to a decrease of the swelling capacity. An increase in the cross-linking density leads to an expansion of the AgNPs size distribution for both types of hydrogels. All synthesized hydrogel-silver nanoparticle composites have shown a high activity in the growth retardation of Staphylococcus aureus microorganisms.


2016 ◽  
Vol 110 ◽  
pp. 821-829 ◽  
Author(s):  
A. Shypylenko ◽  
A.V. Pshyk ◽  
B. Grześkowiak ◽  
K. Medjanik ◽  
B. Peplinska ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 111 ◽  
Author(s):  
Jin-Oh Jeong ◽  
Jong-Seok Park ◽  
Young-Ah Kim ◽  
Su-Jin Yang ◽  
Sung-In Jeong ◽  
...  

Conducting polymer (CP)-based hydrogels exhibit the behaviors of bending or contraction/relaxation due to electrical stimulation. They are similar in some ways to biological organs and have advantages regarding manipulation and miniaturization. Thus, these hydrogels have attracted considerable interest for biomedical applications. In this study, we prepared PPy/PVP hydrogel with different concentrations and content through polymerization and cross-linking induced by gamma-ray irradiation at 25 kGy to optimize the mechanical properties of the resulting PPy/PVP hydrogel. Optimization of the PPy/PVP hydrogel was confirmed by characterization using scanning electron microscopy, gel fraction, swelling ratio, and Fourier transform infrared spectroscopy. In addition, we assessed live-cell viability using live/dead assay and CCK-8 assay, and found good cell viability regardless of the concentration and content of Py/pTS. The conductivity of PPy/PVP hydrogel was at least 13 mS/cm. The mechanical properties of PPy/PVP hydrogel are important factors in their application for biomaterials. It was found that 0.15PPy/PVP20 (51.96 ± 6.12 kPa) exhibited better compressive strength than the other samples for use in CP-based hydrogels. Therefore, it was concluded that gamma rays can be used to optimize PPy/PVP hydrogel and that biomedical applications of CP-based hydrogels will be possible.


Sign in / Sign up

Export Citation Format

Share Document