Specific volume, dielectric properties, and mechanical properties of cured epoxy resins in the glass-transition region

2007 ◽  
Vol 23 (2) ◽  
pp. 569-582 ◽  
Author(s):  
Nobuhiko Shito
2014 ◽  
Vol 131 (13) ◽  
pp. n/a-n/a
Author(s):  
Hideyuki Uematsu ◽  
Takashi Nishimoto ◽  
Shuichi Tanoue ◽  
Yoshiyuki Iemoto ◽  
Yuji Aoki ◽  
...  

Author(s):  
Istebreq A. Saeedi ◽  
Sunny Chaudhary ◽  
Thomas Andritsch ◽  
Alun S. Vaughan

AbstractReactive molecular additives have often been employed to tailor the mechanical properties of epoxy resins. In addition, several studies have reported improved electrical properties in such systems, where the network architecture and included function groups have been modified through the use of so-called functional network modifier (FNM) molecules. The study reported here set out to investigate the effect of a glycidyl polyhedral oligomeric silsesquioxane (GPOSS) FNM on the cross-linking reactions, glass transition, breakdown strength and dielectric properties of an amine-cured epoxy resin system. Since many previous studies have considered POSS to act as an inorganic filler, a key aim was to consider the impact of GPOSS addition on the stoichiometry of curing. Fourier transform infrared spectroscopy revealed significant changes in the cross-linking reactions that occur if appropriate stoichiometric compensation is not made for the additional epoxide groups present on the GPOSS. These changes, in concert with the direct effect of the GPOSS itself, influence the glass transition temperature, dielectric breakdown behaviour and dielectric response of the system. Specifically, the work shows that the inclusion of GPOSS can result in beneficial changes in electrical properties, but that these gains are easily lost if consequential changes in the matrix polymer are not appropriately counteracted. Nevertheless, if the system is appropriately optimized, materials with pronounced improvements in technologically important characteristics can be designed.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Nilesh Tiwari ◽  
A. A. Shaikh

AbstractBuckling and vibration study of the shape memory polymer composites (SMPC) across the glass transition temperature under heterogeneous loading conditions are presented. Finite element analysis based on C° continuity equation through the higher order shear deformation theory (HSDT) is employed considering non linear Von Karman approach to estimate critical buckling and vibration for the temperature span from 273 to 373 K. Extensive numerical investigations are presented to understand the effect of temperature, boundary conditions, aspect ratio, fiber orientations, laminate stacking and modes of phenomenon on the buckling and vibration behavior of SMPC beam along with the validation and convergence study. Effect of thermal conditions, particularly in the glass transition region of the shape memory polymer, is considerable and presents cohesive relation between dynamic modulus properties with magnitude of critical buckling and vibration. Moreover, it has also been inferred that type of axial loading condition along with the corresponding boundary conditions significantly affect the buckling and vibration load across the glass transition region.


1977 ◽  
Vol 47 (1) ◽  
pp. 62-66 ◽  
Author(s):  
J. R. Brown ◽  
B. C. Ennis

DTA, TG, and TMA curves of commercial Kevlar® 49 and Nomex® fibers have been used to assess their behavior at high temperatures. The fibers lost absorbed water around 100°C, and a glass transition was reflected in the DTA and TMA curves in the region of 300°C. Difficulties in the interpretation of DTA and TMA curves in the glass-transition region and in the assignments of Tv‘s for these high-performance fibers are discussed. Whereas Kevlar 49 showed both a crystalline melting point (560°C) and a sharp endothermal thermal decomposition (590°C), Nomex showed only the latter (440°C) and no evidence of melting from the DTA curves. The endothermal decomposition peaks apparently correspond to “polymer melt temperatures” reported for related materials, and correlate well with the TG and TMA features. During thermal analysis of Kevlar 49, oxidation occurs more readily than thermal decomposition, but the latter predominates for Nomex. Differences between dyed and undyed Nomex were due to differences in yarn constitution.


Sign in / Sign up

Export Citation Format

Share Document