Low pressure plasma modifications for the generation of hydrophobic coatings for biomaterials applications

2018 ◽  
Vol 15 (9) ◽  
pp. 1800059 ◽  
Author(s):  
Kim S. Siow
Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3549
Author(s):  
Carlos Ruzafa Silvestre ◽  
María Pilar Carbonell Blasco ◽  
Saray Ricote López ◽  
Henoc Pérez Aguilar ◽  
María Ángeles Pérez Limiñana ◽  
...  

The aim of this work is to develop hydrophobic coatings on leather materials by plasma polymerisation with a low-pressure plasma system using an organosilicon compound, such as hexamethyldisiloxane (HMDSO), as chemical precursor. The hydrophobic coatings obtained by this plasma process were evaluated with different experimental techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and standardised tests including colour measurements of the samples, surface coating thickness and water contact angle (WCA) measurements. The results obtained indicated that the monomer had polymerised correctly and completely on the leather surface creating an ultra-thin layer based on polysiloxane. The surface modification produced a water repellent effect on the leather that does not alter the visual appearance and haptic properties. Therefore, the application of the plasma deposition process showed promising results that makes it a more sustainable alternative to conventional functional coatings, thus helping to reduce the use of hazardous chemicals in the finishing process of footwear manufacturing.


2009 ◽  
Vol 24 (1) ◽  
pp. 117-121 ◽  
Author(s):  
Chun-Ming DENG ◽  
Ke-Song ZHOU ◽  
Min LIU ◽  
Chang-Guang DENG ◽  
Jin-Bing SONG ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3852
Author(s):  
Bongjun Gu ◽  
Dongwook Ko ◽  
Sungjin Jo ◽  
Dong Choon Hyun ◽  
Hyeon-Ju Oh ◽  
...  

Wrinkles attract significant attention due to their ability to enhance the mechanical and optical characteristics of various optoelectronic devices. We report the effect of the plasma gas type, power, flow rate, and treatment time on the wrinkle features. When an optical adhesive was treated using a low-pressure plasma of oxygen, argon, and nitrogen, the oxygen and argon plasma generated wrinkles with the lowest and highest wavelengths, respectively. The increase in the power of the nitrogen and oxygen plasma increased the wavelengths and heights of the wrinkles; however, the increase in the power of the argon plasma increased the wavelengths and decreased the heights of the wrinkles. Argon molecules are heavier and smaller than nitrogen and oxygen molecules that have similar weights and sizes; moreover, the argon plasma comprises positive ions while the oxygen and nitrogen plasma comprise negative ions. This resulted in differences in the wrinkle features. It was concluded that a combination of different plasma gases could achieve exclusive control over either the wavelength or the height and allow a thorough analysis of the correlation between the wrinkle features and the characteristics of the electronic devices.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 338
Author(s):  
Naeem Ahmed ◽  
Asad Masood ◽  
Kim S. Siow ◽  
M. F. Mohd Razip Wee ◽  
Rahmat Zaki Auliya ◽  
...  

In general, seed germination is improved by low-pressure plasma (LPP) treatment using precursors such as air, nitrogen, argon, or water (H2O). Here, H2O-based LPP treatment using the optimized parameters of 10 W and 10 s improves the germination of Bambara groundnut seeds by 22%. LPP increases the wettability and roughness of the seed hilum while oxidizing the surface with carboxyl and amine groups. In this H2O-based treatment of Bambara groundnut seeds, combinatory etching and chemical modification facilitated the imbibition process and increased the germination percentage. The success of this method has the potential to be scaled up to solve food security with seeds otherwise facing germination-related issues.


Author(s):  
Gabriel Morand ◽  
Pascale Chevallier ◽  
Linda Bonilla‐Gameros ◽  
Stéphane Turgeon ◽  
Maxime Cloutier ◽  
...  

2020 ◽  
Vol 53 (24) ◽  
pp. 244001 ◽  
Author(s):  
Irina Filatova ◽  
Veronika Lyushkevich ◽  
Svetlana Goncharik ◽  
Alexander Zhukovsky ◽  
Natalia Krupenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document