scholarly journals A comparison of the folding kinetics of a small, artificially selected DNA aptamer with those of equivalently simple naturally occurring proteins

2013 ◽  
Vol 23 (1) ◽  
pp. 56-66 ◽  
Author(s):  
Camille Lawrence ◽  
Alexis Vallée-Bélisle ◽  
Shawn H. Pfeil ◽  
Derek de Mornay ◽  
Everett A. Lipman ◽  
...  
2008 ◽  
Vol 112 (30) ◽  
pp. 9146-9150 ◽  
Author(s):  
Smita Mukherjee ◽  
Pramit Chowdhury ◽  
Michelle R. Bunagan ◽  
Feng Gai

Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 347
Author(s):  
Jiabin Huang ◽  
Björn Voß

Studying the folding kinetics of an RNA can provide insight into its function and is thus a valuable method for RNA analyses. Computational approaches to the simulation of folding kinetics suffer from the exponentially large folding space that needs to be evaluated. Here, we present a new approach that combines structure abstraction with evolutionary conservation to restrict the analysis to common parts of folding spaces of related RNAs. The resulting algorithm can recapitulate the folding kinetics known for single RNAs and is able to analyse even long RNAs in reasonable time. Our program RNAliHiKinetics is the first algorithm for the simulation of consensus folding kinetics and addresses a long-standing problem in a new and unique way.


2006 ◽  
Vol 128 (5) ◽  
pp. 615-627 ◽  
Author(s):  
Sergio Elenes ◽  
Ying Ni ◽  
Gisela D. Cymes ◽  
Claudio Grosman

Although the muscle nicotinic receptor (AChR) desensitizes almost completely in the steady presence of high concentrations of acetylcholine (ACh), it is well established that AChRs do not accumulate in desensitized states under normal physiological conditions of neurotransmitter release and clearance. Quantitative considerations in the framework of plausible kinetic schemes, however, lead us to predict that mutations that speed up channel opening, slow down channel closure, and/or slow down the dissociation of neurotransmitter (i.e., gain-of-function mutations) increase the extent to which AChRs desensitize upon ACh removal. In this paper, we confirm this prediction by applying high-frequency trains of brief (∼1 ms) ACh pulses to outside-out membrane patches expressing either lab-engineered or naturally occurring (disease-causing) gain-of-function mutants. Entry into desensitization was evident in our experiments as a frequency-dependent depression in the peak value of succesive macroscopic current responses, in a manner that is remarkably consistent with the theoretical expectation. We conclude that the comparatively small depression of the macroscopic currents observed upon repetitive stimulation of the wild-type AChR is due, not to desensitization being exceedingly slow but, rather, to the particular balance between gating, entry into desensitization, and ACh dissociation rate constants. Disruption of this fine balance by, for example, mutations can lead to enhanced desensitization even if the kinetics of entry into, and recovery from, desensitization themselves are not affected. It follows that accounting for the (usually overlooked) desensitization phenomenon is essential for the correct interpretation of mutagenesis-driven structure–function relationships and for the understanding of pathological synaptic transmission at the vertebrate neuromuscular junction.


2012 ◽  
Vol 103 (7) ◽  
pp. 1555-1565 ◽  
Author(s):  
Tzachi Hagai ◽  
Ariel Azia ◽  
Emmanuel Trizac ◽  
Yaakov Levy

1990 ◽  
Vol 259 (3) ◽  
pp. G443-G452 ◽  
Author(s):  
L. C. Read ◽  
A. P. Lord ◽  
V. Brantl ◽  
G. Koch

beta-Casomorphins (beta-CMs) derived from milk beta-casein may exert various opiate activities in milk-fed infants. To assess the physiological significance of beta-CMs as a source of circulating opioids in infants, we measured absorption rates of several beta-CMs under near-physiological conditions using in situ autoperfused lamb intestine. The naturally occurring beta-CMs, beta-CM-7 and beta-CM-4-amide, were absorbed readily into blood with no transfer into lymph. Uptake peaked within several minutes of the luminal infusion of peptide but then declined sharply and stopped within a further 10-15 min. The recovery in blood, intestinal contents, and tissue at the end of the 30-min experiment was less than 1% of the infused dose. The low recovery was due to rapid proteolysis based on in vitro studies that demonstrated half-lives of less than 5 min in lamb blood, luminal contents, and lymph. The synthetic dipeptidyl peptidase IV-resistant analogue beta-[D-Ala2]CM- 4-amide was stable during incubation in blood, lymph, or luminal contents and was absorbed into blood at rates that were maximal within several minutes and remained steady for the 30-min period. We conclude that although natural beta-CMs are transferred across the lamb small intestine, rapid degradation within the intestinal lumen, gut epithelium, and blood would prevent entry into the circulation under normal conditions. Val-beta-CM-7, a putative stable precursor, had similar stability and kinetics of absorption to beta-CM-7, results that exclude Val-beta-CM-7 as a stable precursor for delivery of beta-CMs to the circulation. Essentially identical results to those in lambs were obtained in 7-day-old piglets.


Biochemistry ◽  
2006 ◽  
Vol 45 (35) ◽  
pp. 10504-10511 ◽  
Author(s):  
Jasmin Faraone-Mennella ◽  
F. Akif Tezcan ◽  
Harry B. Gray ◽  
Jay R. Winkler
Keyword(s):  

2015 ◽  
Vol 585 ◽  
pp. 52-63 ◽  
Author(s):  
Rishu Jain ◽  
Rajesh Kumar ◽  
Sandeep Kumar ◽  
Ritika Chhabra ◽  
Mukesh Chand Agarwal ◽  
...  

2019 ◽  
Vol 116 (17) ◽  
pp. 8137-8142 ◽  
Author(s):  
Malwina Szczepaniak ◽  
Manuel Iglesias-Bexiga ◽  
Michele Cerminara ◽  
Mourad Sadqi ◽  
Celia Sanchez de Medina ◽  
...  

Protein (un)folding rates depend on the free-energy barrier separating the native and unfolded states and a prefactor term, which sets the timescale for crossing such barrier or folding speed limit. Because extricating these two factors is usually unfeasible, it has been common to assume a constant prefactor and assign all rate variability to the barrier. However, theory and simulations postulate a protein-specific prefactor that contains key mechanistic information. Here, we exploit the special properties of fast-folding proteins to experimentally resolve the folding rate prefactor and investigate how much it varies among structural homologs. We measure the ultrafast (un)folding kinetics of five natural WW domains using nanosecond laser-induced temperature jumps. All five WW domains fold in microseconds, but with a 10-fold difference between fastest and slowest. Interestingly, they all produce biphasic kinetics in which the slower phase corresponds to reequilibration over the small barrier (<3RT) and the faster phase to the downhill relaxation of the minor population residing at the barrier top [transition state ensemble (TSE)]. The fast rate recapitulates the 10-fold range, demonstrating that the folding speed limit of even the simplest all-β fold strongly depends on the amino acid sequence. Given this fold’s simplicity, the most plausible source for such prefactor differences is the presence of nonnative interactions that stabilize the TSE but need to break up before folding resumes. Our results confirm long-standing theoretical predictions and bring into focus the rate prefactor as an essential element for understanding the mechanisms of folding.


2020 ◽  
Vol 118 (3) ◽  
pp. 335a
Author(s):  
Emil L. Kristoffersen ◽  
Andrea Coletta ◽  
Line Lund ◽  
Birgit Schiøtt ◽  
Victoria Birkedal

Author(s):  
Francisco Alarcón Elvira ◽  
Violeta T. Pardío Sedas ◽  
David Martínez Herrera ◽  
Rodolfo Quintana Castro ◽  
Rosa María Oliart Ros ◽  
...  

Expression of the regulatory stress rpoS gene controls the transcription of cspA genes, which are involved in survival and adaptation to low temperatures. The purpose of this study was to assess the growth kinetics of naturally occurring V. parahaemolyticus in shellstock oysters and in vitro and the cold-shock-induced expression of the rpoS and cspA gene response in vitro during postharvest refrigeration. Naturally contaminated eastern oysters (Crassostrea virginica) and pathogenic (Vp-tdh) and nonpathogenic (Vp-tlh) isolates were stored at 7 ± 1 °C for 168 h and 216 h, respectively. The regulatory stress (rpos) and cold-shock (cspA) gene expressions were determined by reverse transcription PCR. At 24 h, the (Vp-tdh) strain grew faster (p < 0.05) than the (Vp-tlh) strain in oysters (λ = 0.33, 0.39, respectively) and in vitro (λ = 0.89, 37.65, respectively), indicating a better adaptation to cold shock for the (Vp-tdh) strain in live oysters and in vitro. At 24 h, the (Vp-tdh) strain rpoS and cspA gene expressions were upregulated by 1.9 and 2.3-fold, respectively, but the (Vp-tlh) strain rpoS and cspA gene expressions were repressed and upregulated by −0.024 and 1.9-fold, respectively. The V. parahaemolyticus strains that were isolated from tropical oysters have adaptive expression changes to survive and grow at 7 °C, according to their virulence.


Sign in / Sign up

Export Citation Format

Share Document