Compendium of Causative Genes and Their Encoded Proteins for Common Monogenic Disorders

2021 ◽  
Author(s):  
Tucker L. Apgar ◽  
Charles R. Sanders

10.2741/4757 ◽  
2019 ◽  
Vol 24 (5) ◽  
pp. 870-889 ◽  
Author(s):  
Malak S Abedalthagafi


1986 ◽  
Vol 261 (20) ◽  
pp. 9534-9539
Author(s):  
P Mukhopadhyay ◽  
M Filutowicz ◽  
D R Helinski
Keyword(s):  


Author(s):  
Daniel Erskine ◽  
David Koss ◽  
Viktor I. Korolchuk ◽  
Tiago F. Outeiro ◽  
Johannes Attems ◽  
...  

AbstractAccumulation of the protein α-synuclein into insoluble intracellular deposits termed Lewy bodies (LBs) is the characteristic neuropathological feature of LB diseases, such as Parkinson’s disease (PD), Parkinson’s disease dementia (PDD) and dementia with LB (DLB). α-Synuclein aggregation is thought to be a critical pathogenic event in the aetiology of LB disease, based on genetic analyses, fundamental studies using model systems, and the observation of LB pathology in post-mortem tissue. However, some monogenic disorders not traditionally characterised as synucleinopathies, such as lysosomal storage disorders, iron storage disorders and mitochondrial diseases, appear disproportionately vulnerable to the deposition of LBs, perhaps suggesting the process of LB formation may be a result of processes perturbed as a result of these conditions. The present review discusses biological pathways common to monogenic disorders associated with LB formation, identifying catabolic processes, particularly related to lipid homeostasis, autophagy and mitochondrial function, as processes that could contribute to LB formation. These findings are discussed in the context of known mediators of α-synuclein aggregation, highlighting the potential influence of impairments to these processes in the aetiology of LB formation.



2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fan Liu ◽  
Hua Li ◽  
Junwei Wu ◽  
Bin Wang ◽  
Na Tian ◽  
...  

AbstractThe LOX genes have been identified and characterized in many plant species, but studies on the banana LOX genes are very limited. In this study, we respectively identified 18 MaLOX, 11 MbLOX, and 12 MiLOX genes from the Musa acuminata, M. balbisiana and M. itinerans genome data, investigated their gene structures and characterized the physicochemical properties of their encoded proteins. Banana LOXs showed a preference for using and ending with G/C and their encoded proteins can be classified into 9-LOX, Type I 13-LOX and Type II 13-LOX subfamilies. The expansion of the MaLOXs might result from the combined actions of genome-wide, tandem, and segmental duplications. However, tandem and segmental duplications contribute to the expansion of MbLOXs. Transcriptome data based gene expression analysis showed that MaLOX1, 4, and 7 were highly expressed in fruit and their expression levels were significantly regulated by ethylene. And 11, 12 and 7 MaLOXs were found to be low temperature-, high temperature-, and Fusarium oxysporum f. sp. Cubense tropical race 4 (FocTR4)-responsive, respectively. MaLOX8, 9 and 13 are responsive to all the three stresses, MaLOX4 and MaLOX12 are high temperature- and FocTR4-responsive; MaLOX6 and MaLOX17 are significantly induced by low temperature and FocTR4; and the expression of MaLOX7 and MaLOX16 are only affected by high temperature. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression levels of several MaLOXs are regulated by MeJA and FocTR4, indicating that they can increase the resistance of banana by regulating the JA pathway. Additionally, the weighted gene co-expression network analysis (WGCNA) of MaLOXs revealed 3 models respectively for 5 (MaLOX7-11), 3 (MaLOX6, 13, and 17), and 1 (MaLOX12) MaLOX genes. Our findings can provide valuable information for the characterization, evolution, diversity and functionality of MaLOX, MbLOX and MiLOX genes and are helpful for understanding the roles of LOXs in banana growth and development and adaptations to different stresses.



2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Martina Girardelli ◽  
Erica Valencic ◽  
Valentina Moressa ◽  
Roberta Margagliotta ◽  
Alessandra Tesser ◽  
...  

Abstract Background Recurrent aphthous stomatitis with systemic signs of inflammation can be encountered in inflammatory bowel disease, Behçet’s disease (BD), Systemic Lupus Erythematosus (SLE). In addition, it has been proposed that cases with very early onset in childhood can be underpinned by rare monogenic defects of immunity, which may require targeted treatments. Thus, subjects with early onset recurrent aphthous stomatitis receiving a clinical diagnosis of BD-like or SLE-like disease may deserve a further diagnostic workout, including immunologic and genetic investigations. Objective To investigate how an immunologic, genetic and transcriptomics assessment of interferon inflammation may improve diagnosis and care in children with recurrent aphthous stomatitis with systemic inflammation. Methods Subjects referred to the pediatric rheumatologist for recurrent aphthous stomatitis associated with signs of systemic inflammation from January 2015 to January 2020 were enrolled in the study and underwent analysis of peripheral lymphocyte subsets, sequencing of a 17-genes panel and measure of interferon score. Results We enrolled 15 subjects (12 females, median age at disease onset 4 years). The clinical diagnosis was BD in 8, incomplete BD in 5, BD/SLE overlap in 1, SLE in 1. Pathogenic genetic variants were detected in 3 patients, respectively 2 STAT1 gain of function variants in two patients classified as BD/SLE overlap and SLE, and 1 TNFAIP3 mutation (A20 haploinsufficiency) in patients with BD. Moreover 2 likely pathogenic variants were identified in DNASE1L3 and PTPN22, both in patients with incomplete BD. Interferon score was high in the two patients with STAT1 GOF mutations, in the patient with TNFAIP3 mutation, and in 3 genetic-negative subjects. In two patients, the treatment was modified based on genetic results. Conclusions Although recurrent aphthous stomatitis associated with systemic inflammation may lead to a clinical diagnosis of BD or SLE, subjects with early disease onset in childhood deserve genetic investigation for rare monogenic disorders. A wider genetic panel may help disclosing the genetic background in the subset of children with increased interferon score, who tested negative in this study.



2019 ◽  
Vol 47 (5) ◽  
pp. 1429-1436 ◽  
Author(s):  
Rawaa A. Z. Al-Faresi ◽  
Robert. N. Lightowlers ◽  
Zofia M. A. Chrzanowska-Lightowlers

Abstract Mitochondria are ubiquitous organelles present in the cytoplasm of all nucleated eukaryotic cells. These organelles are described as arising from a common ancestor but a comparison of numerous aspects of mitochondria between different organisms provides remarkable examples of divergent evolution. In humans, these organelles are of dual genetic origin, comprising ∼1500 nuclear-encoded proteins and thirteen that are encoded by the mitochondrial genome. Of the various functions that these organelles perform, it is only oxidative phosphorylation, which provides ATP as a source of chemical energy, that is dependent on synthesis of these thirteen mitochondrially encoded proteins. A prerequisite for this process of translation are the mitoribosomes. The recent revolution in cryo-electron microscopy has generated high-resolution mitoribosome structures and has undoubtedly revealed some of the most distinctive molecular aspects of the mitoribosomes from different organisms. However, we still lack a complete understanding of the mechanistic aspects of this process and many of the factors involved in post-transcriptional gene expression in mitochondria. This review reflects on the current knowledge and illustrates some of the striking differences that have been identified between mitochondria from a range of organisms.



2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Parvathy Venugopal ◽  
Lucia Gagliardi ◽  
Cecily Forsyth ◽  
Jinghua Feng ◽  
Kerry Phillips ◽  
...  


Gene ◽  
2005 ◽  
Vol 354 ◽  
pp. 72-79 ◽  
Author(s):  
Cornelia Luban ◽  
Melanie Beutel ◽  
Ulf Stahl ◽  
Udo Schmidt


2016 ◽  
Vol 106 (3) ◽  
pp. e373
Author(s):  
S.M. Maxwell ◽  
J. Friedenthal ◽  
T.G. Nazem ◽  
A.K. Masbou ◽  
D.H. McCulloh ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document