scholarly journals Stability investigations of cytochrome P450 (CYP) enzymes immediately after death in a pig model support the applicability of postmortem hepatic CYP quantification

2021 ◽  
Vol 9 (5) ◽  
Author(s):  
Kata W. Pedersen ◽  
Jakob Hansen ◽  
Jørgen B. Hasselstrøm ◽  
Jakob R. Jornil
2021 ◽  
Vol 22 (16) ◽  
pp. 8447
Author(s):  
Przemysław J. Danek ◽  
Wojciech Kuban ◽  
Władysława A. Daniel

In order to achieve a desired therapeutic effect in schizophrenia patients and to maintain their mental wellbeing, pharmacological therapy needs to be continued for a long time, usually from the onset of symptoms and for the rest of the patients’ lives. The aim of our present research is to find out the in vivo effect of chronic treatment with atypical neuroleptic iloperidone on the expression and activity of cytochrome P450 (CYP) in rat liver. Male Wistar rats received a once-daily intraperitoneal injection of iloperidone (1 mg/kg) for a period of two weeks. Twenty-four hours after the last dose, livers were excised to study cytochrome P450 expression (mRNA and protein) and activity, pituitaries were isolated to determine growth hormone-releasing hormone (GHRH), and blood was collected for measuring serum concentrations of hormones and interleukin. The results showed a broad spectrum of changes in the expression and activity of liver CYP enzymes, which are important for drug metabolism (CYP1A, CYP2B, CYP2C, and CYP3A) and xenobiotic toxicity (CYP2E1). Iloperidone decreased the expression and activity of CYP1A2, CP2B1/2, CYP2C11, and CYP3A1/2 enzymes but increased that of CYP2E1. The CYP2C6 enzyme remained unchanged. At the same time, the level of GHRH, GH, and corticosterone decreased while that of T3 increased, with no changes in IL-2 and IL-6. The presented results indicate neuroendocrine regulation of the investigated CYP enzymes during chronic iloperidone treatment and suggest a possibility of pharmacokinetic/metabolic interactions produced by the neuroleptic during prolonged combined treatment with drugs that are substrates of iloperidone-affected CYP enzymes.


Author(s):  
Rachel Stading ◽  
Xanthi Couroucli ◽  
Krithika Lingappan ◽  
Bhagavatula Moorthy

2008 ◽  
Vol 53 (2) ◽  
pp. 541-551 ◽  
Author(s):  
Seongwook Jeong ◽  
Phuong D. Nguyen ◽  
Zeruesenay Desta

ABSTRACT Voriconazole is an effective antifungal drug, but adverse drug-drug interactions associated with its use are of major clinical concern. To identify the mechanisms of these interactions, we tested the inhibitory potency of voriconazole with eight human cytochrome P450 (CYP) enzymes. Isoform-specific probes were incubated with human liver microsomes (HLMs) (or expressed CYPs) and cofactors in the absence and the presence of voriconazole. Preincubation experiments were performed to test mechanism-based inactivation. In pilot experiments, voriconazole showed inhibition of CYP2B6, CYP2C9, CYP2C19, and CYP3A (half-maximal [50%] inhibitory concentrations, <6 μM); its effect on CYP1A2, CYP2A6, CYP2C8, and CYP2D6 was marginal (<25% inhibition at 100 μM voriconazole). Further detailed experiments with HLMs showed that voriconazole is a potent competitive inhibitor of CYP2B6 (Ki < 0.5), CYP2C9 (Ki = 2.79 μM), and CYP2C19 (Ki = 5.1 μM). The inhibition of CYP3A by voriconazole was explained by noncompetitive (Ki = 2.97 μM) and competitive (Ki = 0.66 μM) modes of inhibition. Prediction of the in vivo interaction of voriconazole from these in vitro data suggests that voriconazole would substantially increase the exposure of drugs metabolized by CYP2B6, CYP2C9, CYP2C19, and CYP3A. Clinicians should be aware of these interactions and monitor patients for adverse effects or failure of therapy.


2016 ◽  
Vol 62 (1) ◽  
pp. 42-54 ◽  
Author(s):  
Anna Bogacz ◽  
Monika Karasiewicz ◽  
Karolina Dziekan ◽  
Danuta Procyk ◽  
Małgorzata Górska-Paukszta ◽  
...  

Summary Introduction: Despite widespread use of Panax ginseng and Ginkgo biloba, the data on the safety as well as herb-drug interactions are very limited. Therefore, we postulate that P. ginseng and G. biloba may modulate the activity and content of cytochrome P450 isozymes involved in the biotransformation of diverse xenobiotic substances. Objective: The aim of our study was to determine the influence of herbal remedies on the expression level of CYP enzymes and transcriptional factors. Methods: Male Wistar rats were given standardized Panax ginseng (30 mg/kg p.o.) or standardized Ginkgo biloba (200 mg/kg p.o.) for 3 and 10 days. The expression in liver tissue was analyzed by realtime PCR method. Results: Our results showed a decrease of CYP3A1 (homologue to human CYP3A4) mRNA level after P. ginseng extract treatment. The CYP2C6 (homologue to human CYP2C9) expression was also reduced. Additionally, after 10 days of the treatment with P. ginseng an increase of CYP1A1 (homologue to human CYP1A1) and CYP1A2 (homologue to human CYP1A2) expression was observed. Moreover, G. biloba extract also caused an increase of expression level for CYP1A1, CYP2C6, CYP3A1 and CYP3A2. Conclusion: Our findings suggest that herbal extracts can modulate the expression of transcriptional factors and CYP enzymes involved in xenobiotic metabolism and chemical carcinogenesis.


2006 ◽  
Vol 27 (2) ◽  
pp. 179-190 ◽  
Author(s):  
Katherine A. Rittenbach ◽  
Andrew Holt ◽  
Lei Ling ◽  
Jackie Shan ◽  
Glen B. Baker

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 178 ◽  
Author(s):  
John T. Groves

Cytochrome P450 (CYP) enzymes are the primary proteins of drug metabolism and steroid biosynthesis. These crucial proteins have long been known to harbor a cysteine thiolate bound to the heme iron. Recent advances in the field have illuminated the nature of reactive intermediates in the reaction cycle. Similar intermediates have been observed and characterized in novel heme-thiolate proteins of fungal origin. Insights from these discoveries have begun to solve the riddle of how enzyme biocatalyst design can afford a protein that can transform substrates that are more difficult to oxidize than the surrounding protein architecture.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Kathryn Burns ◽  
Nuala Ann Helsby

The cytochrome P450 enzyme superfamily (CYP), E.C. 1.14.-.-, are haem-containing monooxygenases with a vast range of both endogenous and exogenous substrates. These include sterols, fatty acids, eicosanoids, fat-soluble vitamins, hormones, pesticides and carcinogens as well as drugs. Listed below are the human enzymes, their relationship with rodent CYP enzyme activities is obscure in that the species orthologue may not metabolise the same substrates. Some of the CYP enzymes located in the liver are particularly important for drug metabolism, both hepatic and extrahepatic CYP enzymes also contribute to patho/physiological processes. Genetic variation of CYP isoforms is widespread and likely underlies a proportion of individual variation in drug disposition. The superfamily has the root symbol CYP, followed by a number to indicate the family, a capital letter for the subfamily with a numeral for the individual enzyme. Some CYP are able to metabolise multiple substrates, others are oligo- or mono- specific.


2019 ◽  
Vol 2 (2) ◽  
pp. 38
Author(s):  
Santosh Kumar Sreevatsav Adiraju ◽  
Kiran Shekar ◽  
Peter Tesar ◽  
Rishendran Naidoo ◽  
Ivan Rapchuk ◽  
...  

Pharmacokinetic alterations of medications administered during surgeries involving cardiopulmonary bypass (CPB) and extracorporeal membrane oxygenation (ECMO) have been reported. The impact of CPB on the cytochrome P450 (CYP) enzymes’ activity is the key factor. The metabolic rates of caffeine, dextromethorphan, midazolam, omeprazole, and Losartan to the CYP-specific metabolites are validated measures of in vivo CYP 1A2, 2D6, 3A4, 2C19, and 2C9 activities, respectively. The study aim is to assess the activities of major CYPs in patients on extracorporeal circulation (EC). This is a pilot, prospective, open-label, observational study in patients undergoing surgery using EC and patients undergoing laparoscopic cholecystectomy as a control group. CYP activities will be measured on the day, and 1–2 days pre-surgery/3–4 days post-surgery (cardiac surgery and Laparoscopic cholecystectomy) and 1–2 days after starting ECMO, 1–2 weeks after starting ECMO, and 1–2 days after discontinuation from ECMO. Aforementioned CYP substrates will be administered to the patient and blood samples will be collected at 0, 1, 2, 4, and 6 h post-dose. Major CYP enzymes’ activities will be compared in each participant on the day, and before/after surgery. The CYP activities will be compared in three study groups to investigate the impact of CYPs on EC.


Mutagenesis ◽  
2019 ◽  
Author(s):  
Lindsay Reed ◽  
Ian W H Jarvis ◽  
David H Phillips ◽  
Volker M Arlt

Abstract The environmental carcinogen benzo[a]pyrene (BaP) is presumed to exert its genotoxic effects after metabolic activation by cytochrome P450 (CYP) enzymes. However, studies using the Hepatic Reductase Null (HRN) mouse model, in which cytochrome P450 oxidoreductase (POR), the electron donor to CYP enzymes, is deleted specifically in hepatocytes, have shown that loss of hepatic POR-mediated CYP function leads to greater BaP-DNA adduct formation in livers of these mice than in wild-type (WT) mice. Here, we used CRISPR/Cas9 technology to knockout (KO) POR expression in mouse hepatoma Hepa1c1c7 cells to create an in vitro model that can mimic the HRN mouse model. Western blotting confirmed the deletion of POR in POR KO Hepa1c1c7 cells whereas expression of other components of the mixed-function oxidase system including cytochrome b5 (Cyb5) and NADH:cytochrome b5 reductase (which can also serve as electron donors to CYP enzymes), and CYP1A1 was similar in BaP-exposed WT and POR KO Hepa1c1c7 cells. BaP exposure caused cytotoxicity in WT Hepa1c1c7 cells but not in POR KO Hepa1c1c7 cells. In contrast, CYP-catalysed BaP-DNA adduct levels were ~10-fold higher in POR KO Hepa1c1c7 cells than in WT Hepa1c1c7 cells, in concordance with the presence of higher levels of BaP metabolite (e.g. BaP-7,8-dihydrodiol) in the medium of cultured BaP-exposed POR KO Hepa1c1c7 cells. As was seen in the HRN mouse model, these results suggest that Cyb5 contributes to the bioactivation of BaP in POR KO Hepa1c1c7 cells. These results indicate that CYP enzymes may play a more important role in the detoxication of BaP, as opposed to its bioactivation.


Sign in / Sign up

Export Citation Format

Share Document