Comparison of collectors of airborne spray drift. Experiments in a wind tunnel and field measurements

2011 ◽  
Vol 67 (6) ◽  
pp. 725-733 ◽  
Author(s):  
Tommy Arvidsson ◽  
Lars Bergström ◽  
Jenny Kreuger
2005 ◽  
Vol 127 (2) ◽  
pp. 185-191 ◽  
Author(s):  
T. Maeda ◽  
E. Ismaili ◽  
H. Kawabuchi ◽  
Y. Kamada

This paper exploits blade surface pressure data acquired by testing a three-bladed upwind turbine operating in the field. Data were collected for a rotor blade at spanwise 0.7R with the rotor disc at zero yaw. Then, for the same blade, surface pressure data were acquired by testing in a wind tunnel. Analyses compared aerodynamic forces and surface pressure distributions under field conditions against analogous baseline data acquired from the wind tunnel data. The results show that aerodynamic performance of the section 70%, for local angle of attack below static stall, is similar for free stream and wind tunnel conditions and resemblances those commonly observed on two-dimensional aerofoils near stall. For post-stall flow, it is presumed that the exhibited differences are attributes of the differences on the Reynolds numbers at which the experiments were conducted.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7136 ◽  
Author(s):  
Collin J. Preftakes ◽  
Jerome J. Schleier ◽  
Greg R. Kruger ◽  
David K. Weaver ◽  
Robert K.D. Peterson

Loss of crop protection products when agricultural spray applications drift has economic and ecological consequences. Modification of the spray solution through tank additives and product formulation is an important drift reduction strategy that could mitigate these effects, but has been studied less than most other strategies. Therefore, an experimental field study was conducted to evaluate spray drift resulting from agricultural ground applications of an insecticide formulated as a suspension concentrate (SC) and as a wettable powder (WP), with and without two adjuvants. Droplet sizes were also measured in a wind tunnel to determine if indirect methods could be substituted for field experimentation to quantify spray drift from these technologies. Results suggest that spray drift was reduced by 37% when comparing the SC to the WP formulation. As much as 63% drift reduction was achieved by incorporating certain spray adjuvants, but this depended on the formulation/adjuvant combination. The wind tunnel data for droplet spectra showed strong agreement with field deposition trends, suggesting that droplet statistics could be used to estimate drift reduction of spray solutions. These findings can be used to develop a classification scheme for formulated products and tank additives based on their potential for reducing spray drift.


2014 ◽  
Vol 564 ◽  
pp. 216-221
Author(s):  
Nasir S. Hassen ◽  
Nor Azwadi Che Sidik ◽  
Jamaluddin Md Sheriff

Spray losses are the most important problem that is faced in the spray application process as result of spray drift to non target areas by the action of air flow.This paper investigated the spray drift for banding applicationusing even flat-fan nozzle TPEunder wind tunnel conditions.In addition, this paper also examined the effect of different spray fan angles 65°, 80° and 95° on spray drift particularly where there is need to make the nozzle operate at the optimum heights above the ground or plant level.In addition, three cross wind speeds 1, 2 and 3m/swere produced to determine the effect of wind speed on total spray drift.According to the results from this study, the nozzle anglehas a significant effect on the total spray drift. The nozzle angle 65° gave the highest drift reduction compared to the other nozzle angles. The maximum driftfor all nozzles was found at nozzle height of 60 cm. The minimum mean value of the drift was found at wind speed of 1 m/s. This study supports the use of nozzle angles of less than 95° on heights more than 0.5m and on wind speeds more than 1m/s as a means for minimizing spray drift.


2020 ◽  
Vol 13 (4) ◽  
pp. 2015-2033 ◽  
Author(s):  
Dennis Niedermeier ◽  
Jens Voigtländer ◽  
Silvio Schmalfuß ◽  
Daniel Busch ◽  
Jörg Schumacher ◽  
...  

Abstract. The interactions between turbulence and cloud microphysical processes have been investigated primarily through numerical simulation and field measurements over the last 10 years. However, only in the laboratory we can be confident in our knowledge of initial and boundary conditions and are able to measure under statistically stationary and repeatable conditions. In the scope of this paper, we present a unique turbulent moist-air wind tunnel, called the Turbulent Leipzig Aerosol Cloud Interaction Simulator (LACIS-T) which has been developed at TROPOS in order to study cloud physical processes in general and interactions between turbulence and cloud microphysical processes in particular. The investigations take place under well-defined and reproducible turbulent and thermodynamic conditions covering the temperature range of warm, mixed-phase and cold clouds (25∘C>T>-40∘C). The continuous-flow design of the facility allows for the investigation of processes occurring on small temporal (up to a few seconds) and spatial scales (micrometer to meter scale) and with a Lagrangian perspective. The here-presented experimental studies using LACIS-T are accompanied and complemented by computational fluid dynamics (CFD) simulations which help us to design experiments as well as to interpret experimental results. In this paper, we will present the fundamental operating principle of LACIS-T, the numerical model, and results concerning the thermodynamic and flow conditions prevailing inside the wind tunnel, combining both characterization measurements and numerical simulations. Finally, the first results are depicted from deliquescence and hygroscopic growth as well as droplet activation and growth experiments. We observe clear indications of the effect of turbulence on the investigated microphysical processes.


2006 ◽  
Vol 52 (179) ◽  
pp. 585-596 ◽  
Author(s):  
Andrew Clifton ◽  
Jean-Daniel Rüedi ◽  
Michael Lehning

AbstractWind tunnel measurements of snowdrift in a turbulent, logarithmic velocity boundary layer have been made in Davos, Switzerland, using natural snow. Regression analysis gives the drift threshold friction velocity (u*t), assuming an exponential drift profile and a simple drift to friction velocity relationship. Measurements over 15 snow covers show that u*t is influenced more by snow density and particle size than by ambient temperature and humidity, and varies from 0.27 to 0.69 ms–1. Schmidt’s threshold algorithm and a modified version used in SNOWPACK (a snow-cover model) agree well with observations if small bond sizes are assumed. Using particle hydraulic diameters, obtained from image processing, Bagnold’s threshold parameter is 0.18. Roughness lengths (z0) vary between snow covers but are constant until the start of drift. Threshold roughness lengths are proportional to . The influence of macroscopic objects on the roughness length is shown by the lower values measured over the smooth and flat snow surface of the wind tunnel (0.04 ≤ z0 ≤ 0.13 mm), compared to field measurements. Mean drifting-snow grain sizes for mainly new and partly decomposed snow are 100–175 μm, and independent of surface particle size.


2000 ◽  
Vol 95 (3) ◽  
pp. 457-495 ◽  
Author(s):  
Michael D. Novak ◽  
Jon S. Warland ◽  
Alberto L Orchansky ◽  
Rick Ketler ◽  
Steven Green

2017 ◽  
Vol 37 (2) ◽  
pp. 2017-2038 ◽  
Author(s):  
Ashvinkumar Chaudhari ◽  
Ville Vuorinen ◽  
Jari Hämäläinen ◽  
Antti Hellsten

Author(s):  
Joshua A. McGinty ◽  
Gaylon D. Morgan ◽  
Peter A. Dotray ◽  
Paul A. Baumann

Aims: Determine the droplet size spectra of agricultural sprays as affected by herbicide formulations, spray nozzle designs, and operating pressures. Place and Duration of Study: This study was conducted in April 2014 at the United States Department of Agriculture Agricultural Research Service Aerial Application Technology Research Unit Facility in College Station, Texas. Methodology: The spray droplet size spectra of six herbicide formulations as well as water alone and water with nonionic surfactant were evaluated in a low-speed wind tunnel. These spray solutions were conducted with five different flat-fan spray nozzle designs, producing a wide range of spray droplet sizes. The wind tunnel was equipped with a laser diffraction sensor to analyze spray droplet size. All combinations of spray solution and nozzle were operated at 207 and 414 kPa and replicated three times. Results: Many differences in droplet size spectra were detected among the spray solutions, nozzle designs, and pressures tested. Solutions of Liberty 280 SL exhibited the smallest median droplet size and the greatest proportion of spray volume contained in droplets 100 µm or less in size.  Solutions of Enlist Duo resulted in smaller median droplet size than many of the solutions tested, but also exhibited some of the smallest production of fine spray droplets. Median droplet size was found to vary greatly among nozzle designs, with the greatest droplet size and smallest drift-prone fine droplet production observed with air-inclusion designs utilizing a pre-orifice. Increasing the operating pressure from 207 to 414 kPa resulted in a decrease in median droplet size and an increase in the production of droplets 100 µm or less in size. Conclusion: Herbicide formulations and spray nozzle designs tested varied widely in droplet size spectra and thus the potential for spray drift. Increasing operating pressure resulted in decreased droplet size and an increase in the production of drift-prone droplets. Additionally, median droplet size alone should not be used to compare spray drift potential among spray solutions but should include relative span and V100 values to better predict the potential for spray drift due to drift-prone spray droplets.


Sign in / Sign up

Export Citation Format

Share Document