EPSPS gene amplification in glyphosate-resistant Italian ryegrass (Lolium perenne ssp. multiflorum) from Arkansas

2012 ◽  
Vol 68 (9) ◽  
pp. 1223-1230 ◽  
Author(s):  
Reiofeli A Salas ◽  
Franck E Dayan ◽  
Zhiqiang Pan ◽  
Susan B Watson ◽  
James W Dickson ◽  
...  
Agriculture ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 114 ◽  
Author(s):  
Taghi Bararpour ◽  
Nicholas Korres ◽  
Nilda Burgos ◽  
Ralph Hale ◽  
Te-Ming Tseng

Agriculture ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 135 ◽  
Author(s):  
Taghi Bararpour ◽  
Ralph Hale ◽  
Gurpreet Kaur ◽  
Jason Bond ◽  
Nilda Burgos ◽  
...  

Diclofop-resistant Italian ryegrass (Lolium perenne L. ssp. Multiflorum (Lam.) Husnot) is a dominant weed problem in non-irrigated winter wheat (Triticum aestivum L.) in mid-south USA. Field studies were conducted from 2001 to 2007 to evaluate the efficacy of herbicides for diclofop-resistant ryegrass control and effect on wheat yield. In 2001 through 2004, chlorsulfuron/metsulfuron at 0.026 kg ha−1 preemergence (PRE) followed by (fb) mesosulfuron at 0.048 kg ha−1 at 4-leaf to 2-tiller ryegrass provided 89% control of diclofop-resistant Italian ryegrass, resulting in the highest wheat yield (3201 kg ha−1). Flufenacet/metribuzin at 0.476 kg ha−1 applied at 1- to 2-leaf wheat had equivalent Italian ryegrass control (87%), but lesser yield (3013 kg ha−1). In 2005–2006, best treatments for Italian ryegrass control were chlorsulfuron/metsulfuron, 0.013 kg ha−1 PRE fb mesosulfuron 0.015 kg ha−1 at 3- to 4-leaf ryegrass (92%); metribuzin, 0.280 kg ha−1 at 2- to 3- leaf wheat fb metribuzin at 2- to 3-tiller ryegrass (94%); chlorsulfuron/metsulfuron (0.026 kg ha−1) (89%); and flufenacet/metribuzin at 1- to 2-leaf wheat (89%). Chlorsulfuron/metsulfuron fb mesosulfuron provided higher yield (3515 kg ha−1) than all other treatments, except metribuzin fb metribuzin.


2016 ◽  
Vol 69 ◽  
pp. 252-257 ◽  
Author(s):  
K.C. Harrington ◽  
T.K. James ◽  
M.D. Parker ◽  
H. Ghanizadeh

The first cases of weeds developing resistance to glyphosate within New Zealand have recently been reported and investigated Both perennial ryegrass (Lolium perenne) and Italian ryegrass (Lolium multiflorum) populations have become resistant to glyphosate in several Marlborough vineyards due to many years of weed control using mainly just glyphosate Glyphosate is currently being used in many situations throughout New Zealand that could easily lead to further resistance developing such as in other perennial fruit crops on roadsides railways amenity areas waste areas fence lines and headlands of crops Following wide consultation as part of a Sustainable Farming Fund project strategies for resistance management in three systems (vineyard and orchards amenity and waste areas and crops and pastures) are suggested Adoption of these strategies will allow glyphosate to continue as a useful herbicide in New Zealand


2012 ◽  
Vol 68 (9) ◽  
pp. 1248-1254 ◽  
Author(s):  
Wilson V Avila-Garcia ◽  
Elena Sanchez-Olguin ◽  
Andrew G Hulting ◽  
Carol Mallory-Smith

2013 ◽  
Vol 66 ◽  
pp. 89-93 ◽  
Author(s):  
H. Ghanizadeh ◽  
K.C. Harrington ◽  
T.K. James ◽  
D.J. Woolley

Plants were obtained from two populations of Italian ryegrass (Lolium multiflorum) and three populations of perennial ryegrass (Lolium perenne) from different vineyards in Marlborough and Nelson that were suspected of being resistant to glyphosate following many consecutive applications of this herbicide over recent years Each population was multiplied by splitting out tillers and this was also done for plants taken from a population of each species from Manawatu pastures where they had not been exposed to glyphosate application A doseresponse experiment showed that four populations taken from the vineyards were about 10 times as resistant to glyphosate as those plants that had not been previously exposed to the herbicide The experiment was repeated and showed one perennial ryegrass population to have a 30fold level of resistance These are the first confirmed cases of glyphosate resistance within New Zealand


2021 ◽  
Vol 12 ◽  
Author(s):  
Claudio Cropano ◽  
Chloé Manzanares ◽  
Steven Yates ◽  
Dario Copetti ◽  
Javier Do Canto ◽  
...  

Self-incompatibility (SI) is a genetic mechanism preventing self-pollination in ~40% of plant species. Two multiallelic loci, called S and Z, control the gametophytic SI system of the grass family (Poaceae), which contains all major forage grasses. Loci independent from S and Z have been reported to disrupt SI and lead to self-compatibility (SC). A locus causing SC in perennial ryegrass (Lolium perenne L.) was previously mapped on linkage group (LG) 5 in an F2 population segregating for SC. Using a subset of the same population (n = 68), we first performed low-resolution quantitative trait locus (QTL) mapping to exclude the presence of additional, previously undetected contributors to SC. The previously reported QTL on LG 5 explained 38.4% of the phenotypic variation, and no significant contribution from other genomic regions was found. This was verified by the presence of significantly distorted markers in the region overlapping with the QTL. Second, we fine mapped the QTL to 0.26 centimorgan (cM) using additional 2,056 plants and 23 novel sequence-based markers. Using Italian ryegrass (Lolium multiflorum Lam.) genome assembly as a reference, the markers flanking SC were estimated to span a ~3 Mb region encoding for 57 predicted genes. Among these, seven genes were proposed as relevant candidate genes based on their annotation and function described in previous studies. Our study is a step forward to identify SC genes in forage grasses and provides diagnostic markers for marker-assisted introgression of SC into elite germplasm.


Weed Science ◽  
2019 ◽  
Vol 67 (3) ◽  
pp. 273-280 ◽  
Author(s):  
Parsa Tehranchian ◽  
Vijay K. Nandula ◽  
Maor Matzrafi ◽  
Marie Jasieniuk

AbstractMultiple resistance to glyphosate, sethoxydim, and paraquat was previously confirmed in two Italian ryegrass [Lolium perenne L. ssp. multiflorum (Lam.) Husnot] populations, MR1 and MR2, in northern California. Preliminary greenhouse studies revealed that both populations were also resistant to imazamox and mesosulfuron, both of which are acetolactate synthase (ALS)-inhibiting herbicides. In this study, three subpopulations, MR1-A (from seed of MR1 plants that survived a 16X rate of sethoxydim), MR1-P (from seed of MR1 plants that survived a 2X rate of paraquat), and MR2 (from seed of MR2 plants that survived a 16X rate of sethoxydim), were investigated to determine the resistance level to imazamox and mesosulfuron, evaluate other herbicide options for the control of these multiple resistant L. perenne ssp. multiflorum, and characterize the underlying ALS-inhibitor resistance mechanism(s). Based on LD50 values, the MR1-A, MR1-P, and MR2 subpopulations were 38-, 29-, 8-fold and 36-, 64-, and 3-fold less sensitive to imazamox and mesosulfuron, respectively, relative to the susceptible (Sus) population. Only MR1-P and MR2 plants were cross-resistant to rimsulfuron, whereas both MR1 subpopulations were cross-resistant to imazethapyr. Pinoxaden (ACCase inhibitor [phenylpyrazoline 'DEN']) only controlled MR2 and Sus plants at the labeled field rate. However, all plants were effectively controlled (>99%) with the labeled field rate of glufosinate. Based on I50 values, MR1-A, MR-P, and MR2 plants were 712-, 1,104-, and 3-fold and 10-, 18-, and 5-fold less responsive to mesosulfuron and imazamox, respectively, than the Sus plants. Sequence alignment of the ALS gene of resistant plants revealed a missense single-nucleotide polymorphism resulting in a Trp-574-Leu substitution in MR1-A and MR1-P plants, heterozygous in both, but not in the MR2 plants. An additional homozygous substitution, Asp-376-Glu, was identified in the MR1-A plants. Addition of malathion or piperonyl butoxide did not alter the efficacy of mesosulfuron on MR2 plants. In addition, the presence of 2,4-D had no effect on the response of mesosulfuron on the MR2 and Sus. These results suggest an altered target site is the mechanism of resistance to ALS inhibitors in MR1-A and MR1-P plants, whereas a non–target site based resistance apparatus is present in the MR2 plants.


Sign in / Sign up

Export Citation Format

Share Document