scholarly journals Performance of Pinoxaden on the Control of Diclofop-Resistant Italian Ryegrass (Lolium perenne L. ssp. multiflorum) in Winter Wheat

Agriculture ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 114 ◽  
Author(s):  
Taghi Bararpour ◽  
Nicholas Korres ◽  
Nilda Burgos ◽  
Ralph Hale ◽  
Te-Ming Tseng
Agriculture ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 135 ◽  
Author(s):  
Taghi Bararpour ◽  
Ralph Hale ◽  
Gurpreet Kaur ◽  
Jason Bond ◽  
Nilda Burgos ◽  
...  

Diclofop-resistant Italian ryegrass (Lolium perenne L. ssp. Multiflorum (Lam.) Husnot) is a dominant weed problem in non-irrigated winter wheat (Triticum aestivum L.) in mid-south USA. Field studies were conducted from 2001 to 2007 to evaluate the efficacy of herbicides for diclofop-resistant ryegrass control and effect on wheat yield. In 2001 through 2004, chlorsulfuron/metsulfuron at 0.026 kg ha−1 preemergence (PRE) followed by (fb) mesosulfuron at 0.048 kg ha−1 at 4-leaf to 2-tiller ryegrass provided 89% control of diclofop-resistant Italian ryegrass, resulting in the highest wheat yield (3201 kg ha−1). Flufenacet/metribuzin at 0.476 kg ha−1 applied at 1- to 2-leaf wheat had equivalent Italian ryegrass control (87%), but lesser yield (3013 kg ha−1). In 2005–2006, best treatments for Italian ryegrass control were chlorsulfuron/metsulfuron, 0.013 kg ha−1 PRE fb mesosulfuron 0.015 kg ha−1 at 3- to 4-leaf ryegrass (92%); metribuzin, 0.280 kg ha−1 at 2- to 3- leaf wheat fb metribuzin at 2- to 3-tiller ryegrass (94%); chlorsulfuron/metsulfuron (0.026 kg ha−1) (89%); and flufenacet/metribuzin at 1- to 2-leaf wheat (89%). Chlorsulfuron/metsulfuron fb mesosulfuron provided higher yield (3515 kg ha−1) than all other treatments, except metribuzin fb metribuzin.


2021 ◽  
Vol 3 ◽  
Author(s):  
John T. Sanders ◽  
Eric A. L. Jones ◽  
Aiden Minter ◽  
Robert Austin ◽  
Gary T. Roberson ◽  
...  

Italian ryegrass [Lolium perenne L. ssp. multiflorum (Lam.) Husnot] is one of the most challenging weeds for winter wheat (Triticum aestivum L.) growers to manage. Italian ryegrass has evolved resistance to the majority of the herbicides labeled for use in wheat and the competitive ability of the species makes it a significant factor driving winter wheat production practices around the world. Previous research has utilized remotely sensed spectral imagery to detect Italian ryegrass in winter wheat to aid weed control decisions. Two studies from 2016 to 2017 were initiated with the intent of identifying the spectral reflectance properties of Italian ryegrass and winter wheat using an unmanned aerial vehicle (UAV) equipped with a 5-band multispectral sensor. Image analysis was conducted to determine the potential for species discrimination throughout the growing season. Supervised classification of the imagery was used to evaluate the ability of the UAV platform for further discrimination between Italian ryegrass and winter wheat. Species differentiation proved to be possible, however the data was not able to be referenced across dates. Due to light variability, the reflectance values changed to such a degree that unsupervised classifications were not possible using a database of values from previous flights. Supervised classification of the multispectral image resulted in >70% classification accuracy between the species. However, near infrared light consistently differed enough for accurate classification between Italian ryegrass and winter wheat across different weed densities, flight altitudes, and imaging dates. On a single field basis, species differentiation was successful and resulted in classified maps of Italian ryegrass and winter wheat. This study also analyzed the exact accuracy of the species differentiation based on the quality and uniformity of light conditions and growth stage of plants.


2012 ◽  
Vol 68 (9) ◽  
pp. 1248-1254 ◽  
Author(s):  
Wilson V Avila-Garcia ◽  
Elena Sanchez-Olguin ◽  
Andrew G Hulting ◽  
Carol Mallory-Smith

Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 162 ◽  
Author(s):  
Taghi Bararpour ◽  
Jason A. Bond ◽  
Gurbir Singh ◽  
Ralph R. Hale ◽  
Matt Edwards ◽  
...  

Italian ryegrass is a major weed problem in wheat (Triticum aestivum L.) production worldwide. Two separate studies were conducted in Stoneville, Mississippi to evaluate: (1) the efficacy of herbicides available to Mississippi producers for controlling glyphosate-resistant (GR) Italian ryegrass (control study), and (2) fall burndown herbicide seed suppression study. Results of the control study showed that flufenacet/metribuzin EPOST followed by (fb) pinoxaden LPOST (standard treatment) provided 93% control of GR Italian ryegrass. Some other treatments provided comparable Italian ryegrass control (92% to 97%) as the standard treatment in 2017. Italian ryegrass control in the seed suppression study was 100%, 100%, 67.5%, 97%, and 99.5% from the application of the following treatments: (1) S-metolachlor + flumioxazin + paraquat in October–November fb glyphosate + clethodim in January–February fb gramoxone as needed (weed-free check); (2) S-metolachlor + flumioxazin + paraquat in October–November; (3) field cultivator (disk) in October–November; (4) glyphosate + clethodim in January–February; and (5) field cultivator in October–November fb glyphosate + clethodim in January–February, respectively. The remaining Italian ryegrass from the application of treatments 3, 4, and 5 produced 65,700; 1008; and 9 seeds m−2, respectively. Seed suppression study highlights the importance of 100% control that is required to manage GR Italian grass.


2020 ◽  
Vol 191 ◽  
pp. 110185 ◽  
Author(s):  
Fei-li Li ◽  
Yuehua Qiu ◽  
Xinyang Xu ◽  
Feng Yang ◽  
Zhiwei Wang ◽  
...  

2012 ◽  
Vol 26 (4) ◽  
pp. 644-648 ◽  
Author(s):  
Timothy L. Grey ◽  
George S. Cutts ◽  
Lynn Sosnoskie ◽  
A. Stanley Culpepper

Field studies were conducted to evaluate Italian ryegrass control and winter wheat tolerance to applications of diclofop, mesosulfuron plus methylated seed oil (MSO) alone or with 30% urea ammonium nitrate (UAN), mesosulfuron plus thifensulfuron plus tribenuron plus MSO, mesosulfuron plus MCPA plus MSO, or flufenacet plus metribuzin. Treatments were applied to wheat PRE, two- to three-leaf wheat (2–3 LF) at Feekes stage 1.0 or to one- to two-tiller wheat (TILL) at Feekes stage 3.0, depending on label recommendations. Studies were conducted in Williamson, GA, and Plains, GA, from autumn 2003 to spring 2005. Italian ryegrass control was variable, depending on location and year. Maximum and most-consistent Italian ryegrass control (> 90%) occurred with mesosulfuron plus MSO and UAN. Without UAN, control of Italian ryegrass with mesosulfuron varied from 44 to 97%. That variability was partially attributed to unfavorable environmental conditions associated with cold night time temperatures at or below 0 C, following applications. Wheat injury observed in response to herbicide treatments was minimal (< 15%) and transient; wheat recovered with no differences in yield.


2021 ◽  
Author(s):  
Claudio Cropano ◽  
Chloé Manzanares ◽  
Steven Yates ◽  
Dario Copetti ◽  
Javier Do Canto ◽  
...  

Self-incompatibility (SI) is a genetic mechanism preventing self-pollination in approximately 40% of plant species. Two multiallelic loci, called S and Z, control the gametophytic SI system of the grass family (Poaceae), which contains all major forage grasses. Loci independent from S and Z have been reported to disrupt SI and lead to self-compatibility (SC). A locus causing SC in perennial ryegrass (Lolium perenne L.) was previously mapped on linkage group (LG) 5 in a F2 population segregating for SC. Using a subset of the same population (n=73), we first performed low-resolution quantitative trait locus (QTL) mapping to exclude the presence of additional, previously undetected contributors to SC. The previously reported QTL on LG 5 explained 38.4% of the phenotypic variation, and no significant contribution from other genomic regions was found. This was verified by the presence of significantly distorted markers in the region overlapping with the QTL. Second, we fine mapped the QTL to 0.26 cM using additional 2,056 plants and 23 novel sequence-based markers. Using an Italian ryegrass (Lolium multiflorum Lam.) genome assembly as reference, the markers flanking SC were estimated to span a ~3 Mb region encoding for 57 predicted genes. Among these, seven genes were proposed as relevant candidate genes based on their annotation and function described in previous studies. Our work is a step forward to identify SC genes in forage grasses and provides diagnostic markers for marker-assisted introgression of SC into elite germplasm.


2011 ◽  
Vol 60 (1) ◽  
pp. 219-232 ◽  
Author(s):  
Anita Jakab ◽  
János Kátai ◽  
Magdolna Tállai ◽  
Andrea Balláné Kovács

A tenyészedényes kísérletünket a DE AGTC MÉK Agrokémiai és Talajtani Intézet tenyészházában állítottuk be 2010. május 27-én. A kísérletben Debrecen-Látókép környékéről származó mészlepedékes csernozjom vályogtalajt alkalmaztunk, amely az alábbi jellemzőkkel rendelkezett: KA: 37,5; leiszapolható rész: 51%; pH(KCl): 5,5; pH(H2O): 6,6; Hu%: 2,8; AL-P2O5: 140 mg·kg-1; AL-K2O: 316,3 mg·kg-1. Az adatok alapján a kísérleti talaj gyengén savanyú, vályog kötöttségű, közepes nitrogén- és foszfor-, valamint jó kálium-ellátottsággal rendelkezett. A kísérletben kontroll-, műtrágya-, valamint szalmakezelést alkalmaztunk, melyeket bizonyos kombinációkban három különböző baktériumkészítménnyel (Bactofil A, EM-1, Microbion UNC) egészítettünk ki. A kísérletet három ismétlésben véletlenblokk elrendezésben állítottuk be. A tesztnövény angolperje (Lolium perenneL.) volt. A kísérlet kezdetétől számított 8. héten a talaj-, valamint a növényminták begyűjtésére került sor. Meghatároztuk a növényminták száraztömegét, a növény foszfor- és káliumtartalmát, valamint a talajminták nitrát-, valamint AL-oldható foszfor- és káliumtartalmát. Eredményeink alapján főbb megállapításaink a következők: – Az angolperje száraztömegét a műtrágyakezelés szignifikánsan növelte. A hatás a tápelem-ellátottság javulásával magyarázható. – A növény foszforkoncentrációja a műtrágyázás következtében csökkent, amelyet a hígulási effektussal magyarázhatunk. – A növény káliumkoncentrációját a műtrágya-, valamint a műtrágya+baktériumtrágya kezelések szignifikánsan serkentették. – A talaj nitráttartalma szignifikánsan növekedett a műtrágyakezelés kivételével minden kezelésben. – A talaj AL-P2O5-tartalma az NPK-műtrágyázás és az EM-1 kezelés következtében statisztikailag igazolható mértékben megnövekedett, míg az AL-K2O-tartalom kizárólag a szalmakezelés hatására nőtt. A baktériumkészítmények önmagukban alkalmazva általában nem eredményeztek jelentős változást a vizsgált paraméterekben, azonban a készítmények szerves/ásványi anyagokkal kombinált adagolása esetében különböző mértékben befolyásolták a vizsgált mutatókat.


Author(s):  
M Gonzalez Yanez ◽  
R Mcginn ◽  
D H Anderson ◽  
A R Henderson ◽  
P Phillips

It Is claimed that the use of the correct enzyme system as an additive on grass silage will satisfactorily control the fermentation and reduce the cell-wall fibre content, thus preserving the nutrients In the silage and aiding their utilisation by the animal (Henderson and McDonald, 1977; Huhtanen et al, 1985; Raurama et al, 1987; Chamberlain and Robertson, 1989; Gordon, 1989;).The aim of the present experiment was to assess the effect of biological additives, enzymes or a combination of enzymes with an Inoculum of lactic acid bacteria, on the composition of silage and on its nutritive value when offered to store lambs as the sole constituent of their diet.On 1st June 1988, first cut perennial ryegrass (Lolium perenne L) at pre-ear emergence was ensiled direct cut untreated (U), treated with a commercial enzyme (E) or with a commercial inoculum of lactic acid bacteria with enzymes (I) in 6t capacity bunker silos. The grass was cut with a mower and lifted with a New Holland precision chop forage harvester. The additives were pumped onto the grass using a dribble bar sited over the pick-up drum.


Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 512
Author(s):  
Alemayehu Worku ◽  
Tamás Tóth ◽  
Szilvia Orosz ◽  
Hedvig Fébel ◽  
László Kacsala ◽  
...  

The objective of this study was to evaluate the aroma profile, microbial and chemical quality of winter cereals (triticale, oats, barley and wheat) and Italian ryegrass (Lolium multiflorum Lam., IRG) plus winter cereal mixture silages detected with an electronic nose. Four commercial mixtures (mixture A (40% of two cultivars of winter triticale + 30% of two cultivars of winter oats + 20% of winter barley + 10% of winter wheat), mixture B (50% of two cultivars of winter triticale + 40% of winter barley + 10% of winter wheat), mixture C (55% of three types of Italian ryegrass + 45% of two cultivars of winter oat), mixture D (40% of three types of Italian ryegrass + 30% of two cultivars of winter oat + 15% of two cultivars of winter triticale + 10% of winter barley + 5% of winter wheat)) were harvested, wilted and ensiled in laboratory-scale silos (n = 80) without additives. Both the principal component analysis (PCA) score plot for aroma profile and linear discriminant analysis (LDA) classification revealed that mixture D had different aroma profile than other mixture silages. The difference was caused by the presence of high ethanol and LA in mixture D. Ethyl esters such as ethyl 3-methyl pentanoate, 2-methylpropanal, ethyl acetate, isoamyl acetate and ethyl-3-methylthiopropanoate were found at different retention indices in mixture D silage. The low LA and higher mold and yeast count in mixture C silage caused off odour due to the presence of 3-methylbutanoic acid, a simple alcohol with unpleasant camphor-like odor. At the end of 90 days fermentation winter cereal mixture silages (mixture A and B) had similar aroma pattern, and mixture C was also similar to winter cereal silages. However, mixture D had different aromatic pattern than other ensiled mixtures. Mixture C had higher (p < 0.05) mold and yeast (Log10 CFU (colony forming unit)/g) counts compared to mixture B. Mixture B and C had higher acetic acid (AA) content than mixture A and D. The lactic acid (LA) content was higher for mixture B than mixture C. In general, the electronic nose (EN) results revealed that the Italian ryegrass and winter cereal mixtures (mixture D) had better aroma profile as compared to winter cereal mixtures (mixture A and B). However, the cereal mixtures (mixture A and B) had better aroma quality than mixture C silage. Otherwise, the EN technology is suitable in finding off odor compounds of ensiled forages.


Sign in / Sign up

Export Citation Format

Share Document