Sensitivity of Meloidogyne enterolobii and M. incognita to fluorinated nematicides

2021 ◽  
Author(s):  
Tristan T. Watson
Homeopathy ◽  
2020 ◽  
Author(s):  
Thais Moraes Ferreira ◽  
Mariana Zandomênico Mangeiro ◽  
Alexandre Macedo Almeida ◽  
Ricardo Moreira Souza

Abstract Background There are relatively few scientific works on the use of homeopathy to manage plant pathogens, particularly nematodes. A handful of studies focused on Meloidogyne spp. parasitizing vegetables have brought contradictory results on nematode control and enhancement of plant tolerance to parasitism. Objective Our goal was to assess the effect of Cina—a well-known anti-nematode ingredient—on Meloidogyne enterolobii parasitizing lettuce. Methods Cina was applied daily on nematode-inoculated plants, from the seedling stage until harvest. We tested an evenly spaced range of Hahnemannian concentrations (c), which were applied though irrigation with a constant dose of the ingredient. Several absolute and relative controls were employed to allow the assessment of the effect of Cina on nematode reproduction and lettuce growth. Results Cina affected growth of non-parasitized plants, both positively and negatively; this effect was modulated by the c applied and the thermal stress suffered by the plants in one of the assays. The effect of Cina on the growth of nematode-parasitized plants was neutral or negative. Cina reduced nematode reproduction by 25–36%. Conclusion Based on the moderate negative effect of Cina on M. enterolobii reproduction, it seems this ingredient may be useful as a complementary strategy for Meloidogyne control. But Cina did not enhance the tolerance of lettuce to Meloidogyne spp.


2011 ◽  
Vol 12 (4) ◽  
Author(s):  
Eduardo José de ALMEIDA ◽  
Jaime Maia dos SANTOS ◽  
Antonio Baldo Geraldo MARTINS ◽  
Gleina Costa Santos ALVES

Plant Disease ◽  
2019 ◽  
Vol 103 (4) ◽  
pp. 775-775 ◽  
Author(s):  
W. B. Rutter ◽  
A. M. Skantar ◽  
Z. A. Handoo ◽  
J. D. Mueller ◽  
S. P. Aultman ◽  
...  

Revista CERES ◽  
2018 ◽  
Vol 65 (3) ◽  
pp. 291-295 ◽  
Author(s):  
Fernando Marcelo Chiamolera ◽  
Antonio Baldo Geraldo Martins ◽  
Pedro Luiz Martins Soares ◽  
Tatiana Pagan Loeiro da Cunha-Chiamolera

ABSTRACT Root-knot nematode Meloidogyne enterolobii is the main phytosanitary problem of guava cultivation in Brazil. Among the strategies to manage the problem, the best prospects are in identifying or developing cultivars or rootstocks that are resistant to this nematode. To identify plants with potential as rootstocks for guava, the reaction of araçá (wild guava) to M. enterolobii was assessed in a greenhouse experiment. Seven araçá species were evaluated (Eugenia stipitata, Psidium acutangulum, P. cattleyanum ‘yellow’, P. friedrichsthalianum, P. guajava var. minor, P. guineense, and Psidium sp.). The plants were inoculated with a suspension of 3,000 eggs of M. enterolobii, using eggplant as control treatment. The parameters fresh root mass, number of eggs and second stage juveniles (J2) per root system, the reproduction factor (RF = Pf/Pi), and araçá reaction were determined during the experiment. RF of the araçá species E. stipitata, P. cattleyanum ‘yellow’, and P. friedrichsthalianum was less than one (RP < 1), therefore resistant to M. enterolobii. The araçá trees had good root system development and the susceptible plants showed many root galls, high number of eggs and J2, and Fusarium solani and Rhizoctonia solani root rot. The araçá species, P. cattleyanum ‘yellow’, P. friedrichsthalianum, and E. stipitata are resistant to M. enterolobii and can be tested as potential guava rootstocks.


Plant Disease ◽  
2014 ◽  
Vol 98 (5) ◽  
pp. 702-702 ◽  
Author(s):  
B. Gao ◽  
R. Y. Wang ◽  
S. L. Chen ◽  
X. H. Li ◽  
J. Ma

Sweet potato (Ipomoea batatas Lam.) is the fifth largest staple crop after rice, wheat, maize, and soybean in China. Sweet potato tubers were received from Zhanjiang, Guangdong Province, China, in June 2013 for research purposes. Upon inspection, the storage roots showed typical symptoms of being infected by root-knot nematodes, Meloidogyne spp.; the incidence of infection was 95%. Meloidogyne spp. females and egg masses were dissected from the symptomatic roots. Each root contained about 32 females on average (n = 20). The perineal patterns of most female specimens (n = 10) were oval shaped, with moderately high to high dorsal arch and mostly lacking obvious lateral lines. The second-stage juvenile had large and triangular lateral lips and broad, bluntly rounded tail tip. These morphological characteristics are similar to those reported in the original description of Meloidogyne enterolobii Yang & Eisenback (2). The 28S rRNA D2D3 expansion domain was amplified with primers MF/MR (GGGGATGTTTGAGGCAGATTTG/AACCGCTTCGGACTTCCACCAG) (1). The sequence obtained for this population (n = 5) of Meloidogyne sp. (GenBank Accession No. KF646797) was 100% identical to the sequence of M. enterolobii (JN005864). For further confirmation, M. incognita specific primers Mi-F/Mi-R (GTGAGGATTCAGCTCCCCAG/ACGAGGAACA TACTTCTCCGTCC), M. javanica specific primers Fjav/Rjav (GGTGCGCGATTGAACTGAGC/CAGGCCCTTCAGTGGAACTATAC), and M. enterolobii specific primers Me-F/Me-R (AACTTTTGTGAAAGTGCCGCTG/ TCAGTTCAGGCAGGATCAACC) were used for amplification of the respective DNA sequences (1). The electrophoresis results showed a bright band (~200 bp) only in the lane with the M. enterolobii specific primers. Therefore, this population of Meloidogyne sp. on sweet potato was identified as M. enterolobii based on its morphological and molecular characteristics. M. enterolobii has been reported to infect more than 20 plant species from six plant families: Fabaceae, Cucurbitaceae, Solanaceae, Myrtaceae, Annonaceae, and Marantaceae (1). To our knowledge, this is the first report of M. enterolobii on a member of the Convolvulaceae in China. Refrences: (1) M. X. Hu et al. Phytopathol. 101:1270, 2011. (2) B. Yang and J. D. Eisenback. J. Nematol. 15:381, 1983.


Plant Disease ◽  
2021 ◽  
Author(s):  
Che-Chang Liang ◽  
P. Janet Chen

Poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch.), originated in southern Mexico and northern Guatemala, is the most valuable potted flowering plant in the spurge family (Euphorbiaceae). The European Union and the United States are two biggest poinsettia markets (Taylor et al. 2011), with a wholesale value of $153 million in the United States in 2019. Root knot galls of poinsettia ‘Luv U Pink’ were collected from a production greenhouse located in Nantou County, Taiwan in March 2021. No aboveground symptoms were observed. A nematode population was established from a single female and used for identification and the Koch’s postulate. The perineal patterns of randomly picked 5 females are round or ovoid with moderate to high dorsal arches, but no distinct lateral lines, ventral striae are fine and smooth. The Morphometric characters of second-stage juvenile include: a vermiform body shape, tail narrow and tapering with rounded tail tips, and a distinct hyaline tail end. Measurements of 20 J2 are as follows: body length, 430 (398 - 473) μm; body width, 15.4 (13.4 - 17.8) μm; stylet length,13.4 (13.0 - 14.0) μm; dorsal esophageal gland orifice to basal knob, 3.4 (2.8 - 3.9) μm; tail length, 52.9 (47.6 - 62.2) μm. All morphometric data were consistent with the original description of Meloidogyne enterolobii (Yang and Eisenback 1983). Nematode DNA was extracted using GeneMark Tissue & Cell Genomic DNA Purification Kit (GeneMark, Taiwan) from approximately 1500 J2 and used for amplification of 18S rRNA gene, a D2-D3 region of 28S rRNA gene, and a mtDNA COII region with primer sets 1A/MelR, D2A/D3B, and C2F3/1108, respectively (Power and Harris 1993, Subbotin et al. 2006, Tigano et al. 2005). The sequence of 18S rRNA gene (accession no. MZ948800 haplotype 1 and MZ955998 haplotype 2), haplotype 1 shared 100% identity with that of M. enterolobii from the United States (KP901058) and China (MN832688); haplotype 2 shared 99.8% identity with that of KP901058 and MN832688. The sequence of the D2-D3 region (MZ955995) shared 99% identity with that M. enterolobii from the United States (KP901079). Sequence of the COII region (MZ964625) also shared 99% identity with that of M. enterolobii from the United States (AY446975) and China (MN840970). Phylogenetic trees of the three gene sequences plotted as described by Ye et al. (2021) revealed that the newly described nematode was grouped with M. enterolobii. Sequence analysis of two fragments: 236 bp and 520 bp amplified with gene specific primers Me-F/R and MK7F/R, respectively (Long et al. 2006, Tigano et al. 2010) also confirmed the identity of M. enterolobii. To measure the reproductive factor (Rf), the Poinsettia ‘Luv U Pink’ seedlings with eight true leaves were transplanted into three 12-cm diameter pots each containing 6000 eggs or water (mock control). Forty-five days after inoculation, the average Rf value of three inoculated plants was 6, and no galls were observed on mock control plant roots, confirming that poinsettia is the host of M. enterolobii. M. enterolobii has been reported in several Euphorbia species, including E. heterophylla, E. prostrata, E. punicea and E. tirucalli (Han et al. 2012, Rich et al. 2009). To the best of our knowledge, this is the first report of M. enterolobii infecting E. pulcherrima ‘Luv U Pink’. 


O Biológico ◽  
2020 ◽  
Vol 82 (1) ◽  
pp. 1-10
Author(s):  
Samara A. de Oliveira ◽  
Juliana M. O Rosa ◽  
Juliana Eulálio ◽  
Claudio Marcelo G. de Oliveira

The aim of this study was to investigate the response of three different stages (one, three and five leaf pairs) of sweet pepper (Capsicum annuum cv. Orazio) seedlings to five inoculation levels of Meloidogyne enterolobii (zero (control), 300, 1000, 3000 and 10000) under greenhouse conditions. Each plant was cultivated in one pot filled with 3.8 L of substrate. The test was a completely randomized design with four replications. The plants were assessed 60 days after inoculation, plant shoot weight, final population of nematodes, and reproduction factor were measured. The results were fitted to Seinhorst model: Y = m + (1-m). ZPi –T. The results showed a tolerance limit (T) of 2,500 nematodes for plants with one and three leaf pair, and 8,500 nematodes for the five-leaf pair plant.


Plant Disease ◽  
2019 ◽  
Vol 103 (2) ◽  
pp. 377-377 ◽  
Author(s):  
L. Luquini ◽  
D. Barbosa ◽  
C. Ferreira ◽  
L. Rocha ◽  
F. Haddad ◽  
...  

Agrociencia ◽  
2021 ◽  
Vol 55 (3) ◽  
pp. 261-272
Author(s):  
Luis Yobani Gayosso Rosales ◽  
Edgar Villar Luna ◽  
María Dolores Rodríguez Torres ◽  
María Valentina Angoa Pérez ◽  
Hortencia Gabriela Mena Violante ◽  
...  

El cultivo de chile (Capsicum annuum L.) destaca por el valor agro-alimenticio alto del producto, aunado a su valor comercial. Los nematodos Meloidogyne incognita y M. enterolobii (Me) afectan al cultivo; M. enterolobii (Me) es el más relevante por su agresividad notable. El estudio de alternativas ecológicas es de interés para control estos fitoparásitos. Los objetivos de esta investigación fueron conocer el efecto de Bacillus subtilis (Bs) (CH90) sobre la expresión de los genes PR-1, PR-5, y PR-12 que codifican proteínas relacionadas con patogénesis en chile cv. California Wonder (Cw) infectado con Me; y evaluar el efecto de Bs sobre agallamiento (A) y producción de huevos (H) del nematodo en raíces de Cw. Dos experimentos independientes (E1 y E2) se establecieron con diseño completamente al azar. En E1 y E2 los tratamientos fueron: Cw inoculado solo con Me (CwMe), Cw con Bs y Me (CwBsMe), Cw solo con Bs (CwBs), y Cw sin inoculación (Cw). En ambos experimentos, el nivel de inóculo de Bs fue 108 UFC mL-1, y para Me fue 500 J2 por planta. En E1 la expresión génica se determinó a 3, 7, y 14 d después de inoculación (DPI) con Me. En E2 las variables A y H se evaluaron 45 DPI con Me. PR-1 y PR-5 se sobre expresaron 3 y 7 DPI en los tratamientos CwBsMe y CwBs, en contraste con CwMe (p≤0.05). A los 14 DPI, los genes en todos los tratamientos tuvieron una expresión menor (p≤0.05). La sobre expresión máxima de PR-12 se registró a 14 DPI en los tratamientos CwBsMe y CwBs (p≤0.05). Las plantas de cv. C. Wonder tratadas con B. subtilis CH90 solo o en combinación con M. enterolobii activaron las rutas de defensa dependientes del ácido salicílico (AS) y jasmónico (AJ) pero dicha activación no afectó la reproducción del nematodo en raíces de chile.


2021 ◽  
pp. 270-284
Author(s):  
Regina M. D. G. Carneiro ◽  
Marcilene F. A. Santos ◽  
José Mauro C. Castro

Abstract The following review of the nematodes from cultivated guava is limited to the major problem caused by M. enterolobii, its idenfication and its management strategies. The synonymization of Meloidogyne enterolobii with Meloidogyne mayaguensis and the different methods of identifying Meloidogyne species are discussed. The life cycle, host-parasite relationships, symptoms, damage and dissemination of M. enterolobii are described. The host status of cover crops, maize and fruit plants for M. enterolobii is discussed, as well as the resistance in Psidium spp. to root-knot nematodes. New prospects using genetic resistance in Brazil and some control strategies that can be used in an integrated way are presented.


Sign in / Sign up

Export Citation Format

Share Document