mock control
Recently Published Documents


TOTAL DOCUMENTS

29
(FIVE YEARS 12)

H-INDEX

3
(FIVE YEARS 1)

Plant Disease ◽  
2021 ◽  
Author(s):  
Che-Chang Liang ◽  
P. Janet Chen

Poinsettia (Euphorbia pulcherrima Willd. ex Klotzsch.), originated in southern Mexico and northern Guatemala, is the most valuable potted flowering plant in the spurge family (Euphorbiaceae). The European Union and the United States are two biggest poinsettia markets (Taylor et al. 2011), with a wholesale value of $153 million in the United States in 2019. Root knot galls of poinsettia ‘Luv U Pink’ were collected from a production greenhouse located in Nantou County, Taiwan in March 2021. No aboveground symptoms were observed. A nematode population was established from a single female and used for identification and the Koch’s postulate. The perineal patterns of randomly picked 5 females are round or ovoid with moderate to high dorsal arches, but no distinct lateral lines, ventral striae are fine and smooth. The Morphometric characters of second-stage juvenile include: a vermiform body shape, tail narrow and tapering with rounded tail tips, and a distinct hyaline tail end. Measurements of 20 J2 are as follows: body length, 430 (398 - 473) μm; body width, 15.4 (13.4 - 17.8) μm; stylet length,13.4 (13.0 - 14.0) μm; dorsal esophageal gland orifice to basal knob, 3.4 (2.8 - 3.9) μm; tail length, 52.9 (47.6 - 62.2) μm. All morphometric data were consistent with the original description of Meloidogyne enterolobii (Yang and Eisenback 1983). Nematode DNA was extracted using GeneMark Tissue & Cell Genomic DNA Purification Kit (GeneMark, Taiwan) from approximately 1500 J2 and used for amplification of 18S rRNA gene, a D2-D3 region of 28S rRNA gene, and a mtDNA COII region with primer sets 1A/MelR, D2A/D3B, and C2F3/1108, respectively (Power and Harris 1993, Subbotin et al. 2006, Tigano et al. 2005). The sequence of 18S rRNA gene (accession no. MZ948800 haplotype 1 and MZ955998 haplotype 2), haplotype 1 shared 100% identity with that of M. enterolobii from the United States (KP901058) and China (MN832688); haplotype 2 shared 99.8% identity with that of KP901058 and MN832688. The sequence of the D2-D3 region (MZ955995) shared 99% identity with that M. enterolobii from the United States (KP901079). Sequence of the COII region (MZ964625) also shared 99% identity with that of M. enterolobii from the United States (AY446975) and China (MN840970). Phylogenetic trees of the three gene sequences plotted as described by Ye et al. (2021) revealed that the newly described nematode was grouped with M. enterolobii. Sequence analysis of two fragments: 236 bp and 520 bp amplified with gene specific primers Me-F/R and MK7F/R, respectively (Long et al. 2006, Tigano et al. 2010) also confirmed the identity of M. enterolobii. To measure the reproductive factor (Rf), the Poinsettia ‘Luv U Pink’ seedlings with eight true leaves were transplanted into three 12-cm diameter pots each containing 6000 eggs or water (mock control). Forty-five days after inoculation, the average Rf value of three inoculated plants was 6, and no galls were observed on mock control plant roots, confirming that poinsettia is the host of M. enterolobii. M. enterolobii has been reported in several Euphorbia species, including E. heterophylla, E. prostrata, E. punicea and E. tirucalli (Han et al. 2012, Rich et al. 2009). To the best of our knowledge, this is the first report of M. enterolobii infecting E. pulcherrima ‘Luv U Pink’. 


Author(s):  
Diana Domínguez-Martínez ◽  
Daniel Nuñez Avellaneda ◽  
Juan Castillo Cruz ◽  
Gloria León-Avila ◽  
BLANCA GARCIA-PEREZ ◽  
...  

The nucleotide-binding domain (NBD) and leucine-rich repeat receptors, such as NOD-like receptors (NLRs), have pivotal functions in the innate immune response to various viral infections participating during the recognition of pathogens and activation of signaling pathways. One NLR, NOD2, is a dynamic protein that is activated in the presence of viral genomes and metabolites. However, its participation in combating a dengue virus (DENV) infection remains unclear. The aim of this study was to determine the role of NOD2 in macrophage-like THP-1 cells during an in vitro infection with DENV type 2 (DENV2). The interactions of NOD2 with RIP2 and MAVS was examined in DENV2-infected and agonist-stimulated cells. The effects of downregulating NOD2 expression or signaling on virus loads was also evaluated. The cellular mRNA expression and protein levels of NOD2 on cells under the stimuli were quantified with RT-PCR, Western blot and indirect immunofluorescence. Both the mRNA and protein expression of NOD2 was enhanced in response to DENV-2 infection. Interactions of NOD2 with RIP2 and MAVS, analyzed with confocal microscopy and co-immunoprecipitation assays, were time-dependent and increased in the post-infection period, between 6 and 24 h. After silencing NOD2 expression, DENV2-infected cells displayed greater viral loads and decreased expression of IL-8 and IFN-α (measured in supernatants obtained from the cells), compared to the uninfected (mock control) cells or those transfected with irrelevant-siRNA. Thus, in response to a DENV2 infection, NOD2 was activated in THP-1 human macrophage-like cells, the production of IL-8 and IFN-α was enhanced, and viral replication was limited.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomohiro Kotaki ◽  
Xuping Xie ◽  
Pei-Yong Shi ◽  
Masanori Kameoka

AbstractThe development of specific antiviral compounds to SARS-CoV-2 is an urgent task. One of the obstacles for the antiviral development is the requirement of biocontainment because infectious SARS-CoV-2 must be handled in a biosafety level-3 laboratory. Replicon, a non-infectious self-replicative viral RNA, could be a safe and effective tool for antiviral evaluation. Herein, we generated a PCR-based SARS-CoV-2 replicon. Eight fragments covering the entire SARS-CoV-2 genome except S, E, and M genes were amplified with HiBiT-tag sequence by PCR. The amplicons were ligated and in vitro transcribed to RNA. The cells electroporated with the replicon RNA showed more than 3000 times higher luminescence than MOCK control cells at 24 h post-electroporation, indicating robust translation and RNA replication of the replicon. The replication was drastically inhibited by remdesivir, an RNA polymerase inhibitor for SARS-CoV-2. The IC50 of remdesivir in this study was 0.29 μM, generally consistent to the IC50 obtained using infectious SARS-CoV-2 in a previous study (0.77 μM). Taken together, this system could be applied to the safe and effective antiviral evaluation without using infectious SARS-CoV-2. Because this is a PCR-based and transient replicon system, further improvement including the establishment of stable cell line must be achieved.


2020 ◽  
Vol 110 (12) ◽  
pp. 1988-2002 ◽  
Author(s):  
Anna K. Stasko ◽  
Amine Batnini ◽  
Carlos Bolanos-Carriel ◽  
Jinshan Ella Lin ◽  
Yun Lin ◽  
...  

Auxin (indole-3-acetic acid, IAA) has been implicated as a susceptibility factor in both beneficial and pathogenic molecular plant−microbe interactions. Previous studies have identified a large number of auxin-related genes underlying quantitative disease resistance loci (QDRLs) for Phytophthora sojae. Thus, we hypothesized that auxin may be involved the P. sojae−soybean interaction. The levels of IAA and related metabolites were measured in mycelia and media supernatant as well as in mock and inoculated soybean roots in a time course assay. The expression of 11 soybean Pin-formed (GmPIN) auxin efflux transporter genes was also examined. Tryptophan, an auxin precursor, was detected in the P. sojae mycelia and media supernatant. During colonization of roots, levels of IAA and related metabolites were significantly higher in both moderately resistant Conrad and moderately susceptible Sloan inoculated roots compared with mock controls at 48 h postinoculation (hpi) in one experiment and at 72 hpi in a second, with Sloan accumulating higher levels of the auxin catabolite IAA-Ala than Conrad. Additionally, one GmPIN at 24 hpi, one at 48 hpi, and three at 72 hpi had higher expression in inoculated compared with the mock control roots in Conrad. The ability of resistant cultivars to cope with auxin accumulation may play an important role in quantitative disease resistance. Levels of jasmonic acid (JA), another plant hormone associated with defense responses, were also higher in inoculated roots at these same time points, suggesting that JA also plays a role during the later stages of infection.


2020 ◽  
Author(s):  
José M. Uribe-Salazar ◽  
Aadithya Sekar ◽  
Gulhan Kaya ◽  
KaeChandra Weyenberg ◽  
Cole Ingamells ◽  
...  

ABSTRACTZebrafish have practical features that make them a useful model for higher-throughput tests of gene function using CRISPR/Cas9 editing to create ‘knockout’ models. Due to the large number of available tools to design CRISPR assays and diversity of theories/model systems they were originally built on, we sought to systematically compare computational and empirical approaches for predicting gene-editing efficacy in zebrafish. We subjected zebrafish embryos to CRISPR/Cas9 with 50 different guide RNAs (gRNAs) targeting 14 genes and assayed individual editing efficiencies. We compared our experimental in vivo efficiencies in mosaic G0 embryos with those predicted by seven commonly used gRNA design tools and found large discrepancies between methods. Assessing off-target mutations (predicted in silico and in vitro) found that the majority of tested loci had low in vivo frequencies (<1%). Moreover, understanding that recent segmental duplications in the zebrafish genome could exacerbate CRISPR targeting of individual genes, we cataloged these loci and have made them available as a resource. Lastly, we assessed the transcriptome of negative ‘mock’ control CRISPR larvae injected with Cas9 enzyme or mRNA with no gRNA using RNA-seq and identified differentially expressed genes with high variability between injections. Using these same data, we discovered on average ~60 putative somatic mosaic frameshift mutations impacting genes per pool of injected larvae, potentially due to background cutting of DNA with Cas9 in the absence of gRNA. To verify this previously unreported phenomenon in zebrafish, we validated seven of twelve genes tested carrying low frequency mosaic somatic mutations in the genomes of a separate batch of injected larvae. These results suggest that negative control embryos may carry mutations within genes leading to spurious phenotypes. Overall, our results provide a valuable resource for the zebrafish community for the design and execution of CRISPR/Cas9 experiments.AUTHOR SUMMARYZebrafish have proven to be a powerful model organism for the functional characterization of genes. Development of new workflows targeting individual or multiple genes simultaneously require a thorough understanding of the advantages and limitations of current available methods for CRISPR-editing in zebrafish. Here, we systematically evaluated on- and off-target efficiencies prediction methods of 50 gRNAs by experimentally testing their CRISPR cutting efficiencies in embryos. Moreover, we performed a global assessment of duplicated portions of the zebrafish genome, providing a powerful resource for the design of future CRISPR assays. Lastly, we evaluated the possibility that spurious editing occurs in samples injected with the Cas9 nuclease without a gRNA, which are commonly used as a baseline control. This analysis revealed high variability in gene expression and the presence of frameshift variants in larvae injected solely with Cas9, suggesting that additional caution should be taken when using these samples as baseline controls in functional characterizations of genes.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Elias Imahorn ◽  
Magomet Aushev ◽  
Stefan Herms ◽  
Per Hoffmann ◽  
Sven Cichon ◽  
...  

Abstract Epidermodysplasia verruciformis (EV) is a genodermatosis characterized by the inability of keratinocytes to control cutaneous β-HPV infection and a high risk for non-melanoma skin cancer (NMSC). Bi-allelic loss of function variants in TMC6, TMC8, and CIB1 predispose to EV. The correlation between these proteins and β-HPV infection is unclear. Its elucidation will advance the understanding of HPV control in human keratinocytes and development of NMSC. We generated a cell culture model by CRISPR/Cas9-mediated deletion of CIB1 to study the function of CIB1 in keratinocytes. Nine CIB1 knockout and nine mock control clones were generated originating from a human keratinocyte line. We observed small changes in gene expression as a result of CIB1 knockout, which is consistent with the clearly defined phenotype of EV patients. This suggests that the function of human CIB1 in keratinocytes is limited and involves the restriction of β-HPV. The presented model is useful to investigate CIB1 interaction with β-HPV in future studies.


2020 ◽  
Author(s):  
Tomohiro Kotaki ◽  
Xuping Xie ◽  
Pei-Yong Shi ◽  
Masanori Kameoka

AbstractThe development of specific antiviral compounds to SARS-CoV-2 is an urgent task. One of the obstacles for the antiviral development is the requirement of biocontainment because infectious SARS-CoV-2 must be handled in a biosafety level-3 laboratory. Replicon, a non-infectious self-replicative viral RNA, could be a safe and effective tool for antiviral screening; however, SARS-CoV-2 replicon has not been reported yet. Herein, we generated a PCR-based SARS-CoV-2 replicon. Eight fragments covering the entire SARS-CoV-2 genome except S, E, and M genes were amplified with HiBiT-tag sequence by PCR. The amplicons were ligated and in vitro transcribed to RNA. The cells electroporated with the replicon RNA showed more than 3,000 times higher luminescence than MOCK control cells at 24 hours post-electroporation, indicating robust viral translation and RNA replication. The replication was drastically inhibited by remdesivir, an RNA polymerase inhibitor for SARS-CoV-2. The IC50 of remdesivir in this study was 0.29 μM, generally consistent to the IC50 obtained using infectious SARS-CoV-2 in a previous study (0.77 μM). Taken together, this system could be applied to the safe and effective antiviral screening without using infectious SARS-CoV-2. Because this is a transient replicon, further improvement including the establishment of stable cell line must be achieved.


Vaccines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 363
Author(s):  
Young Chan Kim ◽  
Barbara Dema ◽  
Roberto Rodriguez-Garcia ◽  
César López-Camacho ◽  
Fabiana M. S. Leoratti ◽  
...  

Plasmodium vivax is the world’s most widely distributed human malaria parasite, with over 2.8 billion people at risk in Asia, the Americas, and Africa. The 80–90% new P. vivax malaria infections are due to relapses which suggest that a vaccine with high efficacy against relapses by prevention of hypnozoite formation could lead to a significant reduction in the prevalence of P. vivax infections. Here, we describe the development of new recombinant ChAdOx1 and MVA vectors expressing P. cynomolgi Thrombospondin Related Adhesive Protein (PcTRAP) and the circumsporozoite protein (PcCSP). Both were shown to be immunogenic in mice prior to their assessment in rhesus macaques. We confirmed good vaccine-induced humoral and cellular responses after prime-boost vaccination in rhesus macaques prior to sporozoite challenge. Results indicate that there were no significant differences between mock-control and vaccinated animals after challenge, in terms of protective efficacy measured as the time taken to 1st patency, or as number of relapses. This suggests that under the conditions tested, the vaccination with PcTRAP and PcCSP using ChAdOx1 or MVA vaccine platforms do not protect against pre-erythrocytic malaria or relapses despite good immunogenicity induced by the viral-vectored vaccines.


Author(s):  
Jia Hu ◽  
Jacob O’Brien ◽  
Amey S. Joshi ◽  
Zahra S. Navabi ◽  
Andrew D. Alegria ◽  
...  

Abstract In response to the COVID-19 pandemic, studies have shown that frequently-touched surfaces that are contaminated with SARS-CoV-2 can pose a risk to public health and safety. Considering elevators as a high-risk environment for the spread of COVID-19 and other infectious diseases via surface transmission, common methods of manually applying liquid-form disinfectants are impractical for sanitizing the elevator panel after each use. Therefore, an automated UVC light surface sanitization device with integrated sensing components to avoid UVC light-human interaction and perform frequent sanitization was developed. Algorithmically, the system uses a motion sensor, an inertial measurement unit, and a door sensor to determine when the elevator is empty, stationary, and shut. Once these conditions are met, the UVC lamp is enabled to safely sanitize the elevator control panel. The device’s UVC irradiation capabilities were tested by applying UVC light to a mock control panel. A minimum power density of 0.31 mW/cm² was detected, which can deactivate SARS-CoV-2. The sensing and control system was tested in an elevator and it was demonstrated to be able to detect operating conditions and activate the UVC light at appropriate instances. Our device operates using inexpensive hardware and it can be easily integrated into existing elevator infrastructures.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 363
Author(s):  
Cristian Olaya ◽  
Stephen J. Fletcher ◽  
Ying Zhai ◽  
Jonathan Peters ◽  
Paolo Margaria ◽  
...  

Tospoviruses cause significant losses to a wide range of agronomic and horticultural crops worldwide. The type member, Tomato spotted wilt tospovirus (TSWV), causes systemic infection in susceptible tomato cultivars, whereas its infection is localized in cultivars carrying the Sw-5 resistance gene. The response to TSWV infection in tomato cultivars with or without Sw-5 was determined at the virus small RNA level in the locally infected leaf. Predicted reads were aligned to TSWV reference sequences. The TSWV genome was found to be differentially processed among each of the three-viral genomic RNAs—Large (L), Medium (M) and Small (S)—in the Sw-5(+) compared to Sw-5(−) genotypes. In the Sw-5(+) cultivar, the L RNA had the highest number of viral small-interfering RNAs (vsiRNAs), whereas in the Sw-5(−) cultivar the number was higher in the S RNA. Among the three-viral genomic RNAs, the distribution of hotspots showed a higher number of reads per million reads of vsiRNAs of 21 and 22 nt class at the 5′ and 3′ ends of the L and the S RNAs, with less coverage in the M RNA. In the Sw-5(−) cultivar, the nature of the 5′ nucleotide-end in the siRNAs varied significantly; reads with 5′-adenine-end were most abundant in the mock control, whereas cytosine and uracil were more abundant in the infected plants. No such differences were seen in case of the resistant genotype. Findings provided insights into the response of tomato cultivars to TSWV infection.


Sign in / Sign up

Export Citation Format

Share Document