Trifluoroethanol-containing RP-HPLC mobile phases for the separation of transmembrane peptides human glycophorin-A, integrin alpha-1, and p24: analysis and prevention of potential side reactions due to formic acid

2014 ◽  
Vol 21 (2) ◽  
pp. 61-70 ◽  
Author(s):  
Toshiaki Hara ◽  
Yue Huang ◽  
Akihiro Ito ◽  
Toru Kawakami ◽  
Hironobu Hojo ◽  
...  
1992 ◽  
Vol 57 (1) ◽  
pp. 33-45
Author(s):  
Vladimír Jakuš

A new approach to theoretical evaluation of the Gibbs free energy of solvation was applied for estimation of retention data in high-performance liquid chromatography on reversed phases (RP-HPLC). Simple and improved models of stationary and mobile phases in RP-HPLC were employed. Statistically significant correlations between the calculated and experimental data were obtained for a heterogeneous series of twelve compounds.


2019 ◽  
Vol 35 (1) ◽  
pp. 140-149 ◽  
Author(s):  
Somana Siva Prasad ◽  
G. V. Krishna Mohan ◽  
A. Naga Babu

In this study, a novel, simple and precise RP-HPLC method has been developed for the quantitative analysis of Lenalidomide (LLM) in pharmaceutical formulations using analytical quality by design approach. An X-bridge-C18 column (150 mm × 4.6 mm × 3.5 µ) with mobile phases containing a Potassium dihydrogen orthophosphate anhydrous buffer and methanol in the ratio of (90:10 v/v) and (35:65 v/v) are used for the estimation of LLM and its degradation products. The flow rate of 0.8 mL/min is maintained and all degradation studies are performed at 210 nm using photodiode array (PDA) detector. Method Validation is carried out according to International Council for Harmonisation (ICH) guidelines and the parameters namely; precision, accuracy, specificity, stability, robustness, linearity, limit of quantitation (LOQ) and limit of detection (LOD) are evaluated. The present developed RP-HPLC method shows the purity angle of peaks is less than their threshold angle, signifying that it to be suitable for stability studies. Hence, the developed method can be used for the successful separation of LLM and its impurities in the pharmaceutical dosage formulations.


Author(s):  
Axel Kosider ◽  
Dominik Blaumeiser ◽  
Simon Schoetz ◽  
Patrick Preuster ◽  
Andreas Bösmann ◽  
...  

Formic acid decomposition (FAD) generates H2 at low temperatures. However, many known catalyst systems suffer from deactivation due to competing side reactions during FAD. In this work, we focus on...


BMC Genomics ◽  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Sandra Louzada ◽  
Walid Algady ◽  
Eleanor Weyell ◽  
Luciana W. Zuccherato ◽  
Paulina Brajer ◽  
...  

2020 ◽  
Vol 10 (5) ◽  
pp. 1713 ◽  
Author(s):  
Chang-Seob Seo ◽  
Hyeun-Kyoo Shin

Yeonkyopaedok-san is a traditional Korean medicine used in the early treatment of boils. In the present study, its 12 marker components for quality control were determined using high-performance liquid chromatography (HPLC) with photodiode array detection and ultra-performance liquid chromatography–mass spectrometry with tandem mass spectrometry (UPLC–MS/MS). The investigated 12 marker components of Yeonkyopaedok-san were as follows: 3-caffeoylquinic acid, cimifugin 7-glucoside, liquiritin apioside, ferulic acid, narirutin, 5-O-methylvisammioside, naringin, neohesperidin, oxypeucedanin hydrate, arctigenin, glycyrrhizic acid, and 6-gingerol. The analytical column used for the separation of the 12 marker analytes in Yeonkyopaedok-san was a Waters SunFire C18 column (4.6 mm × 250 mm, 5 μm). The two mobile phases used were 0.1% (v/v) aqueous formic acid and 0.1% (v/v) formic acid in acetonitrile. In the UPLC–MS/MS analysis, all components were separated using a Waters ACQUITY UPLC BEH C18 column (2.1 mm × 100 mm, 1.7 μm). The two mobile phases used were 0.1% (v/v) aqueous formic acid and acetonitrile. The coefficient of determination of the calibration curves in both analysis systems showed good linearity (>0.99). The amounts of the 12 marker components in Yeonkyopaedok-san determined using HPLC–photodiode array detection and UPLC–MS/MS analyses were found to be 0.14–9.00 mg/g and 2.35–853.11 μg/g, respectively.


1990 ◽  
Vol 18 (19) ◽  
pp. 5829-5836 ◽  
Author(s):  
Jawed Hamid ◽  
Alfred T.H. Burness

2015 ◽  
Vol 93 (7) ◽  
pp. 784-789 ◽  
Author(s):  
Andrea F. Scott ◽  
Kevin B. Thurbide ◽  
Danica Quickfall

The flame ionization detector (FID) response toward alkali metals and hydrocarbons was compared. Optimal hydrogen flame gas flow rates were found near 40 mL/min for hydrocarbon response and 80 mL/min for alkali response. While each displayed a linear FID response, alkali metals produced several orders of magnitude greater detector sensitivity than hydrocarbons. Of note, KCl, NaCl, LiCl, and ethanol yielded respective FID sensitivity of about 7500, 980, 130, and 1 mV/μg analyte. This was subsequently demonstrated to greatly alter the FID response of organic salts. For example, while formic acid is normally unresponsive in an FID, its potassium salt could be readily detected here at picogram levels. Conversely, this phenomenon also rendered the FID unsuitable for use with buffered mobile phases containing such salts. In particular, FID background and baseline noise levels for formic acid – sodium formate buffers were about 10 times larger than equivalent experiments with methanol–water and up to two orders of magnitude larger than pure water. Overall, the results show that alkali metals respond much stronger in the FID than do hydrocarbons. Accordingly, their presence in organic analytes or mobile phases must therefore be accounted for when using this detector, particularly in areas such as subcritical water chromatography where it is commonly employed.


Sign in / Sign up

Export Citation Format

Share Document