The role of tryptophan in the antibacterial activity of a 15-residue bovine lactoferricin peptide

2001 ◽  
Vol 7 (4) ◽  
pp. 190-196 ◽  
Author(s):  
Bengt Erik Haug ◽  
John S Svendsen
Author(s):  
Pramod Dhakal ◽  
Ankit a Achary ◽  
Vedamurthy Joshi

Bioenhancers are drug facilitator which do not show the typical drug activity but in combination to enhance the activity of other molecule in several way including increase the bioavailability of drug across the membrane, potentiating the drug molecules by conformational interaction, acting as receptor for drug molecules and making target cell more receptive to drugs and promote and increase the bioactivity or bioavailability or the uptake of drugs in combination therapy. The objective of the present study was to evaluate the antibacterial and activity of combination in Azadirachta indica extract with cow urine distillate and pepper extract against common pathogenic bacteria, a causative agent of watery diarrhea. It has been found that Indian indigenous cow urine and its distillate also possess bioenhancing ability. Bioenhancing role of cow urine distillate (CUD) and pepper extract was investigated on antibacterial activity of ethanol extract of Azadirachta indica. Antibacterial activity of ethanol extract neem alone and in combination with CUD and pepper extract were determined the ATCC strains against Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa and E-coli by cup plate diffusion method. Ethanol extract of neem has showed more effect on P. aeruginosa, E-coli than S. aureus and K. pneumonia with combination of CUD and pepper extract. CUD and pepper did not show any inhibition of test bacteria in low concentration. The antibacterial effect of combination of extract and CUD was higher than the inhibition caused by extract alone and is suggestive of the bioenhancing role of cow urine distillate and pepper. Moreover, inhibition of test bacteria was observed with less concentration of extract on combining with CUD


Author(s):  
Virginia Fuochi ◽  
Massimo Caruso ◽  
Rosalia Emma ◽  
Aldo Stivala ◽  
Riccardo Polosa ◽  
...  

Background: The key ingredients of e-cigarettes liquid are commonly propane-1,2-diol (also called propylene glycol) and propane-1,2,3-triol (vegetal glycerol) and their antimicrobial effects are already established. The nicotine and flavors which are often present in e-liquids can interfere with the growth of some microorganisms. Objective: The effect of the combining these elements in e-liquids is unknown. The aim of the study was to investigate the possible effects of these liquids on bacterial growth in the presence or absence of nicotine and flavors. Methods: Susceptibilities of pathogenic strains (Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, Enterococcus faecalis and Sarcina lutea) were studied by means of a multidisciplinary approach. Cell viability and antioxidant assays were also evaluated. Results: All e-liquids investigated showed antibacterial activity against at least one pathogenic strain. A higher activity was correlated to the presence of flavors and nicotine. Discussion: In most cases the value of minimal bactericidal concentration is equal to the value of minimal inhibitory concentration showing that these substances have a bactericidal effect. This effect was observed in concentrations up to 6.25% v/v. Antioxidant activity was also correlated to presence of flavors. Over time, the viability assay in human epithelial lung A549 cells showed a dose-dependent inhibition of cell growth. Conclusion: Our results have shown that flavors considerably enhance the antibacterial activity of propane-1,2-diol and propane-1,2,3-triol. This study provides important evidence that should be taken into consideration in further investigative approaches, to clarify the different sensitivity of the various bacterial species to e-liquids, including the respiratory microbiota, to highlight the possible role of flavors and nicotine.


1988 ◽  
Vol 55 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Robert A. Collins ◽  
Keith R. Parsons ◽  
Terry R. Field ◽  
A. John Bramley

SummaryXanthine oxidase (XO) was demonstrated to be present in the teat canal and secretory tissue of the bovine mammary gland by histochemical techniques. Homogenates of these tissues were able to replace XO in an antibacterial assay with Streptococcus uberis. The action of XO on its substrate hypoxanthine was shown to provide an essential component for anti-streptococcal activity mediated by lactoperoxidase. A mechanism is proposed whereby the interaction of XO, lactoperoxidase and thiocyanate may provide antibacterial activity in the teat canal.


Chemosphere ◽  
2018 ◽  
Vol 206 ◽  
pp. 175-183 ◽  
Author(s):  
Zaineb Bouaziz ◽  
Laurence Soussan ◽  
Jean-Marc Janot ◽  
Maguy Jaber ◽  
Abdesslem Ben Haj Amara ◽  
...  

Author(s):  
Saffiya Banu. A ◽  
Sheila John ◽  
Sarah Jane Monica ◽  
Saraswathi. K ◽  
Arumugam. P

Recent research studies indicate the role of functional foods in preventing the development of complications associated with type 2 diabetes mellitus. Chia seeds are an excellent source of dietary fibre, essential fatty acids, micronutrients and non-nutritive components. The objective of the study was to evaluate the antioxidant, antibacterial, antidiabetic and anti-inflammatory potential of chia seeds. TPC and TFC were estimated using Folin-Ciocalteu Reagent and Alumininum Chloride method. The antioxidant activity was determined using DPPH● radical, ABTS●+ radical, Superoxide (O2-) radical, Fe3+ reducing and phosphomolybdenum reduction assay. Agar well diffusion method was used to determine the antibacterial activity against Escherichia coli, Proteus vulgaris, Shigella flexneri, Micrococcus luteus, Bacillus subtilis and Staphylococcus aureus. Antidiabetic and anti-inflammatory activities were evaluated using alpha amylase inhibition assay and heat induced haemolysis method. Volatile functional compounds were identified using Gas chromatography mass spectrometry. Upon quantification, TPC and TFC were found to be 850.67±14.14µg/mg GAE and 171.21±12.86µg/mg QE. Free radical scavenging activity of chia seeds was ranked in the order of DPPH● radical >ABTS●+ radical > Superoxide (O2-) radical. The capability of chia seeds to function as electron donors was evident through its strong reducing power. With regard to antibacterial activity, maximum inhibition was observed for Staphylococcus aureus, with a zone of inhibition of 31mm at 500µg/mL. Results of antidiabetic assay highlighted the alpha amylase inhibitory action of chia seeds with an IC50 value of 121.46µg/mL. The anti-inflammatory activity of chia seeds increased linearly in a dose dependent manner. GC-MS analysis showed the presence of functionally active compounds such as coumarine, napthoquinone, phytol, fatty acids, flavone and flavone derivatives. Findings of the study highlight that chia seeds have several essential therapeutic properties. Furthermore, clinical studies are required to validate the role of chia seeds in preventing the development of complications associated with type 2 diabetes mellitus.


2020 ◽  
Vol 2 ◽  
pp. 100073
Author(s):  
Belete B. Beyene ◽  
Ayenew M. Mihirteu ◽  
Misganaw T. Ayana ◽  
Amogne W. Yibeltal

2018 ◽  
Vol 46 (sup3) ◽  
pp. S572-S584 ◽  
Author(s):  
Prajita Paul ◽  
SureshK. Verma ◽  
Pritam Kumar Panda ◽  
Sangeeta Jaiswal ◽  
Bikash R. Sahu ◽  
...  

Author(s):  
D. Magimai Antoni Raj ◽  
Amal George ◽  
A. Dhayal Raj ◽  
A. Albert Irudayaraj ◽  
X. Venci ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document