Rapid‐Thermal‐Annealing‐Induced Passivation Degradation and Recovery of Polysilicon Passivated Contact with Czochralski and Cast Multicrystalline Silicon Substrates

2021 ◽  
pp. 2100344
Author(s):  
Mengmeng Feng ◽  
Yuheng Zeng ◽  
Zhenhai Yang ◽  
Mingdun Liao ◽  
Jingming Zheng ◽  
...  
1985 ◽  
Vol 52 ◽  
Author(s):  
D. L. Kwong ◽  
N. S. Alvi ◽  
Y. H. Ku ◽  
A. W. Cheung

ABSTRACTDouble-diffused shallow junctions have been formed by ion implantation of both phosphorus and arsenic ions into silicon substrates and rapid thermal annealing. Experimental results on defect removal, impurity activation and redistribution, effects of Si preamorphization, and electrical characteristics of Ti-silicided junctions are presented.


AIP Advances ◽  
2012 ◽  
Vol 2 (3) ◽  
pp. 032150 ◽  
Author(s):  
Min-Hao Hong ◽  
Chun-Wei Chang ◽  
Dung-Ching Perng ◽  
Kuan-Ching Lee ◽  
Shiu-Ko Jang Jian ◽  
...  

1989 ◽  
Vol 146 ◽  
Author(s):  
Leonard Rubin ◽  
Nicole Herbots ◽  
JoAnne Gutierrez ◽  
David Hoffman ◽  
Di Ma

ABSTRACTA method for producing shallow silicided diodes for MOS devices (with junction depths of about 0.1 µm), by implanting after forming the silicide layer was investigated. The key to this integrated process is the use of rapid thermal annealing (RTA) to activate the dopants in the silicon, so that there is very little thermal broadening of the implant distribution. Self-aligned titanium silicide (TiSi2) films with thicknesses ranging from 40 to 80 nm were grown by RTA of sputter deposited titanium films on silicon substrates. After forming the TiSi2, arsenic and boron were implanted. A second RTA step was used after implantation to activate these dopants. It was found that implanting either dopant caused a sharp increase in the sheet resistivity of the TiSi2. The resistivity can be easily restored to its original value (about 18 µΩ-cm) by a post implant RTA anneal. RBS analysis showed that arsenic diffuses rapidly in the TiSi2 during RTA at temperatures as low as 600°C. SIMS data indicated that boron was not mobile up to temperatures of 900°C, possibly because it forms a compound with the titanium which precipitates in the TiSi 2. Coalescence of TiSi2 occurs during post implant furnace annealing, leading to an increase in the sheet resistivity. The amount of coalescence depends on the film thickness, but not on whether or not the film had been subject to implantation. Spreading resistance profiling data showed that both arsenic and boron diffused into the TiSi2 during furnace annealing, reducing the surface concentrations of dopant at the TiSi2/Si interface. Both N+/P and P+/N diodes formed by this technique exhibited low leakage currents after the second RTA anneal. This is attributed to removal of the implant damage by the RTA. In summary, the second RTA serves the dual purpose of removing implant damage in the TiSi2 and creating the shallow junction by dopant activation.


2019 ◽  
Vol 57 ◽  
pp. 7-16
Author(s):  
Tung Thanh Bui ◽  
Tien Minh Huynh ◽  
Thuy Thanh Tieu ◽  
Chien Mau Dang

Metallic nanoparticles have various potential applications. Recent studies have showed that their morphology had a strong influence on their optical and electrical properties. In this work, rapid thermal annealing was used to produce gold nanoparticles on silicon substrates. Morphology control of the gold nanoparticles was made by changing inert annealing gases. Spherical gold nanoparticles were obtained with nitrogen while hemispherical gold nanoparticles were formed with argon.


1985 ◽  
Vol 52 ◽  
Author(s):  
N E B Cowern ◽  
K J Yallup ◽  
D J Godfrey ◽  
D G Hasko ◽  
R A McMahon ◽  
...  

ABSTRACTThe diffusion and activation of implanted boron in silicon during rapid thermal annealing (RTA) has been studied using the analytical techniques of SIMS, TEM, and sheet resistance measurements. Both crystalline and pre-amorphised silicon substrates were investigated. Data analysis in conjunction with a range of numerical models indicates some novel features of boron RTA, as well as accounting for previously observed features. In particular, a large transient diffusion enhancement coupled with an increase of electrical activity, are seen at short anneal times, in the case of crystalline silicon substrates. A non-equilibrium diffusion enhancement of a different type is also seen at much longer times, in both crystalline and pre-amorphised samples implanted to high doses. This second enhancement persists after all the precipitated boron formed on implantation has become substitutional. TEM studies show that the transient enhancement may be associated with the evolution of extended defect structures during the early stages of annealing. Both types of enhancement can be well represented by multiplying the ‘normal’ concentration-dependent diffusivity (with β=0.5) by a factor f>1.


1996 ◽  
Vol 441 ◽  
Author(s):  
C. Cabral ◽  
L. A. Clevenger ◽  
J. M. E. Harper ◽  
R. A. Roy ◽  
K. L. Saenger ◽  
...  

AbstractWe demonstrate that the addition of a molybdenum interlayer between titanium and silicon enhances the formation of C54 TiSi2, without bypassing the formation of the C49 TiSi2 phase. In situ x-ray diffraction analysis during rapid thermal annealing, at a rate of 3 °C/s, was used to study the phase formation sequence of TiSi2 starting from a blanket bilayer of Ti on Mo on a polycrystalline Si substrate. It was shown, as in the case without the Mo layer, that the C49 TiSi2 phase forms first, followed by the C54 TiSi2 phase. The results were similar for undoped or arsenic, boron, and phosphorous doped polycrystalline silicon substrates. The temperature range over which the C49 phase is stable is reduced, on average, by 80 °C. The lower end of the range (appearance of C49) is increased by approximately 60 °C and the upper end of the range (disappearance of C49) is decreased by about 20 0C. The orientation of the C49 phase differs in that both the C49(131) and C49(060) orientations are observed, compared to the case without the Mo layer where only the C49(131) orientation is observed.


1987 ◽  
Vol 92 ◽  
Author(s):  
R. C. Cammarata ◽  
C. V. Thompson ◽  
S. M. Garrison

ABSTRACTRecently there has been a great deal of interest in the use of thin (≤0.1µm) heavily doped polysilicon films as diffusion sources for shallow junctions in silicon substrates. It has been reported that grain growth and solid phase epitaxy occur during annealing of such films and that the apparent rates of both are much greater during rapid thermal annealing. We report similar grain growth behavior for rapid thermal annealed thin polysilicon films deposited onto amorphous SiO2. Based on these experimental results we propose that solid phase homoepitaxy in polysilicon films occurs via secondary grain growth. This process proceeds rapidly at first but slows down due to grain boundary drag. Rapid thermal annealing of polysilicon films provides a method for selectively utilizing the kinetic process that dominates for short times.


2014 ◽  
Vol 92 (7/8) ◽  
pp. 896-901 ◽  
Author(s):  
C. Baldus-Jeursen ◽  
R. Tarighat ◽  
E. Fathi ◽  
S. Sivoththaman

Low thermal budget rapid thermal annealing is a promising method of forming highly crystalline silicon thin films on silicon substrates for heterojunction solar cells. In this work, the extent of crystallization was examined by Raman and ultraviolet reflectance spectroscopy, and ellipsometry was used to derive film optical properties. Solar cells were fabricated and analyzed using dark and illuminated current–voltage characteristics, external quantum efficiency, and solar simulator measurements with device efficiency approaching 14%.


Sign in / Sign up

Export Citation Format

Share Document