In-Situ x-Ray Diffraction Analysis of TiSi2 Phase Formation from a Titanium-Molybdenum Bilayer

1996 ◽  
Vol 441 ◽  
Author(s):  
C. Cabral ◽  
L. A. Clevenger ◽  
J. M. E. Harper ◽  
R. A. Roy ◽  
K. L. Saenger ◽  
...  

AbstractWe demonstrate that the addition of a molybdenum interlayer between titanium and silicon enhances the formation of C54 TiSi2, without bypassing the formation of the C49 TiSi2 phase. In situ x-ray diffraction analysis during rapid thermal annealing, at a rate of 3 °C/s, was used to study the phase formation sequence of TiSi2 starting from a blanket bilayer of Ti on Mo on a polycrystalline Si substrate. It was shown, as in the case without the Mo layer, that the C49 TiSi2 phase forms first, followed by the C54 TiSi2 phase. The results were similar for undoped or arsenic, boron, and phosphorous doped polycrystalline silicon substrates. The temperature range over which the C49 phase is stable is reduced, on average, by 80 °C. The lower end of the range (appearance of C49) is increased by approximately 60 °C and the upper end of the range (disappearance of C49) is decreased by about 20 0C. The orientation of the C49 phase differs in that both the C49(131) and C49(060) orientations are observed, compared to the case without the Mo layer where only the C49(131) orientation is observed.

1994 ◽  
Vol 375 ◽  
Author(s):  
C. Cabral ◽  
L. A. Clevenger ◽  
G. B. Stephenson ◽  
S. Brauer ◽  
G. Morales ◽  
...  

AbstractIt has been demonstrated, using synchrotron radiation, that at rapid thermal annealing rates (3°C/s) the formation of CoSi2 shifts to higher temperatures when a thin Ti interlayer is placed between Co and polycrystalline Si. It has also been shown that the Ti interlayer reduces the temperature range between the start of CoSi formation and CoSi2 formation (i.e. the range over which CoSi is present). 13 nm of Co deposited by physical vapor deposition on polycrystalline Si with and without either a 2 nm or 3.4 nm interlayer of Ti was analyzed in-situ by monitoring x-ray diffraction (XRD) peak intensity as a function of temperature using monochromatic radiation from a synchrotron beam line and by monitoring resistivity as a function of temperature in a rapid thermal annealing (RTA) system. The XRD analysis indicates that the phase formation proceeds from CoSi to CoSi2 in a temperature range that decreases from about 200°C to 140°C to 115°C with pure Co, Co/2 nm Ti and Co/3.4 nm Ti films respectively. The onset of the CoSi formation increases by about 135°C and 160° for Co/ 2 nm Ti and Co/3.4 nm Ti compared to pure Co. The CoSi temperature range decreases from about 75°C in pure Co to less than 50°C in Co/Ti. In-situ RTA resistance along with in-situ XRD analysis indicates that the onset formation temperatures for CoSi are about 440°C, 575°C and 600°C and the temperatures for the completion of CoSi2 formation are about 640°C, 715°C and 715°C for Co, Co / 2 nm Ti and Co / 3.4 nm Ti films respectively. The results are consistent with the Ti interlayer acting as a diffusion barrier during the initial stages of the Co-Si reaction.


2010 ◽  
Vol 43 (5) ◽  
pp. 1036-1039 ◽  
Author(s):  
J. Wittge ◽  
A. N. Danilewsky ◽  
D. Allen ◽  
P. McNally ◽  
Z. Li ◽  
...  

The nucleation of dislocations at controlled indents in silicon during rapid thermal annealing has been studied byin situX-ray diffraction imaging (topography). Concentric loops extending over pairs of inclined {111} planes were formed, the velocities of the inclined and parallel segments being almost equal. Following loss of the screw segment from the wafer, the velocity of the inclined segments almost doubled, owing to removal of the line tension of the screw segments. The loops acted as obstacles to slip band propagation.


2010 ◽  
Vol 25 (S1) ◽  
pp. S45-S47
Author(s):  
Ji-Ning Wang ◽  
Wei-Li Li ◽  
Xiao-Liang Li ◽  
W. D. Fei

A 2-2-type nanostructure bilayer film of CoFe2O4/Pb(Zr0.52Ti0.48)O3 was successfully prepared on the (111)Pt/Ti/SiO2/Si substrate. The Pb(Zr0.52Ti0.48)O3 layer in the bilayer film is (111) oriented and is a mixture of tetragonal and monoclinic phases. The results from an in situ X-ray diffraction analysis of the multiferroic bilayer film under statistic magnetic field indicate that the monoclinic-tetragonal phase transition was induced by magnetostriction of the CoFe2O4 layer. A large magnetoelectric effect was obtained probably because of the different polarization directions of the tetragonal and monoclinic phases.


1996 ◽  
Vol 429 ◽  
Author(s):  
K. Ando ◽  
T. Ishigami ◽  
Y. Matsubara ◽  
T. Horiuchi ◽  
S. Nishimoto

AbstractAn in situ rapid thermal hydrogenation (RTH) pretreatment of titanium prior to rapid thermal annealing (RTA), or RTH/RTA, is proposed as a silicide formation annealing in a CMOS self-aligned silicide (salicide) process. The in situ RTH is found to enhance silicidation, to reduce nitridation, and even to lower the resultant sheet resistance of titanium silicide.During in situ RTH (e.g., at 550°C), amorphous Ti silicide (e.g., 15-nm thick) grows selectively on Si. Furthermore, Ti nitridation during subsequent RTA (690°C, N2, 10 Torr, 30 s) is reduced depending on RTH (H2, 10 Torr, 30 s) temperature. Accordingly, for 550°C RTH and an initial Ti thickness of 15 nm, the sheet resistance obtained at the 0.27-μm-wide n+ poly-Si gate after a phase transition annealing (800°C, Ar, 10 s) was lower (11.7 Ω /□, st. dev. = 6%) than that of conventional Ti silicide (15.8 Ω/□, st. dev. = 10%). The silicidation enhancement and nitridation reduction are related to crystal structure metamorphosis or to hydrogen interstitial incorporation in the Ti layer during RTH as observed by x-ray diffraction analysis. It is concluded that in situ RTH pretreatment before RTA is very promising as a sub-quarter-micron CMOS salicide process.


1995 ◽  
Vol 10 (9) ◽  
pp. 2355-2359 ◽  
Author(s):  
L.A. Clevenger ◽  
R.A. Roy ◽  
C. Cabral ◽  
K.L. Saenger ◽  
S. Brauer ◽  
...  

We demonstrate the use of a synchrotron radiation source for in situ x-ray diffraction analysis during rapid thermal annealing (RTA) of 0.35 μm Salicide (self-aligned silicide) and 0.4 μm Polycide (silicided polysilicon) TiSi2 Complementary Metal Oxide Semiconductor (CMOS) gate structures. It is shown that the transformation from the C49 to C54 phase of TiSi2 occurs at higher temperatures in submicron gate structures than in unpatterned blanket films. In addition, the C54 that forms in submicron structures is (040) oriented, while the C54 that forms in unpatterned Salicide films is randomly oriented. Although the preferred oreintation of the initial C49 phase was different in the Salicide and Polycide gate structures, the final orientation of the C54 phase formed was the same. An incomplete conversion of C49 into C54-TiSi2 during the RTA of Polycide gate structures was observed and is attributed to the retarding effects of phosphorus on the transition.


1995 ◽  
Vol 402 ◽  
Author(s):  
L. A. Clevenger ◽  
C. Cabral ◽  
R. A. Roy ◽  
C. Lavoie ◽  
R. Viswanathan ◽  
...  

AbstractA detailed in situ study of silicide reactions during rapid thermal annealing of patterned structures was performed to determine the effects of linewidth (0.2 to 1.1 μm), dopants (arsenic, boron or phosphorus) and silicon substrate type (poly-Si or <100>-Si) on the C49 to C54-TiSi2 transformation. A synchrotron x-ray source and a high speed position sensitive detector were used to collect x-ray diffraction patterns of the reacting phases on a millisecond time scale, in situ, during annealing. We demonstrate that most patterned C49-TiSi2 structures (0.2 to 1.1 μm in width, 2 to 4 μm2 in area) will incompletely transform into C54-TiSi2 during rapid thermal annealing. The C49 to C54 transformation ends at about 900°C and further annealing to higher temperatures does not force the remaining C49 to transform into C54. We also observed that the C54 formation temperature increases as the linewidth of the silicide structure decreases. These results are explained by a low density of C54 nuclei in C49 which leads to a one-dimensional growth of C54 grains along the length of the patterned lines. Finally the incorporation of a Mo implant into either poly-Si or <100>-Si before the deposition of titanium is shown to increase the percentage of C49 that transforms into C54 and also to lower the C54 formation temperature.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3920
Author(s):  
Martin Weber ◽  
Gábor Balázs ◽  
Alexander V. Virovets ◽  
Eugenia Peresypkina ◽  
Manfred Scheer

By reacting [{Cp‴Fe(CO)2}2(µ,η1:1-P4)] (1) with in situ generated phosphenium ions [Ph2P][A] ([A]− = [OTf]− = [O3SCF3]−, [PF6]−), a mixture of two main products of the composition [{Cp‴Fe(CO)2}2(µ,η1:1-P5(C6H5)2)][PF6] (2a and 3a) could be identified by extensive 31P NMR spectroscopic studies at 193 K. Compound 3a was also characterized by X-ray diffraction analysis, showing the rarely observed bicyclo[2.1.0]pentaphosphapentane unit. At room temperature, the novel compound [{Cp‴Fe}(µ,η4:1-P5Ph2){Cp‴(CO)2Fe}][PF6] (4) is formed by decarbonylation. Reacting 1 with in situ generated diphenyl arsenium ions gives short-lived intermediates at 193 K which disproportionate at room temperature into tetraphenyldiarsine and [{Cp‴Fe(CO)2}4(µ4,η1:1:1:1-P8)][OTf]2 (5) containing a tetracyclo[3.3.0.02,7.03,6]octaphosphaoctane ligand.


Sign in / Sign up

Export Citation Format

Share Document