Defects formed by pulsed laser annealing: electrical properties and depth profiles in n-type silicon measured by deep level transient spectroscopy

2010 ◽  
Vol 8 (3) ◽  
pp. 956-959
Author(s):  
David Schindele ◽  
Peter Pichler ◽  
Jürgen Lorenz ◽  
Peter Oesterlin ◽  
Heiner Ryssel
2005 ◽  
Vol 108-109 ◽  
pp. 279-284 ◽  
Author(s):  
O.F. Vyvenko ◽  
N.V. Bazlov ◽  
M.V. Trushin ◽  
A.A. Nadolinski ◽  
Michael Seibt ◽  
...  

Influence of annealing in molecular hydrogen as well as of treatment in hydrogen plasma (hydrogenation) on the electrical properties of NiSi2 precipitates in n- and p-type silicon has been studied by means of deep level transient spectroscopy (DLTS). Both annealing and hydrogenation gave rise to noticeable changes of the shape of the DLTS-peak and of the character of its dependence on the refilling pulse duration that according to [1] allows one to classify the electronic states of extended defects as “band-like” or “localized”. In both n- and p-type samples DLTS-peak in the initial as quenched samples showed bandlike behaviour. Annealing or hydrogenation of n-type samples converted the band-like states to the localised ones but differently shifted the DLTS-peak to higher temperatures. In p-type samples, the initial “band-like” behaviour of DLTS peak remained qualitatively unchanged after annealing or hydrogenation. A decrease of the DLTS-peak due to precipitates and the appearance of the peaks due to substitutional nickel and its complexes were found in hydrogenated p-type sample after removal of a surface layer of 10-20µm.


1999 ◽  
Vol 572 ◽  
Author(s):  
T. Henkel ◽  
Y. Tanaka ◽  
N. Kobayashi ◽  
H. Tanoue ◽  
M. Gong ◽  
...  

ABSTRACTStructural and electrical properties of beryllium implanted silicon carbide have been investigated by secondary ion mass spectrometry, Rutherford backscattering as well as deep level transient spectroscopy, resistivity and Hall measurements. Strong redistributions of the beryllium profiles have been found after a short post-implantation anneal cycle at temperatures between 1500 °C and 1700 °C. In particular, diffusion towards the surface has been observed which caused severe depletion of beryllium in the surface region. The crystalline state of the implanted material is well recovered already after annealing at 1450 °C. However, four deep levels induced by the implantation process have been detected by deep level transient spectroscopy.


2015 ◽  
Vol 242 ◽  
pp. 163-168 ◽  
Author(s):  
Ilia L. Kolevatov ◽  
Frank Herklotz ◽  
Viktor Bobal ◽  
Bengt Gunnar Svensson ◽  
Edouard V. Monakhov

The evolution of irradiation-induced and hydrogen-related defects in n-type silicon in the temperature range 0 – 300 °C has been studied by deep level transient spectroscopy (DLTS) and minority carrier transient spectroscopy (MCTS). Implantation of a box-like profile of hydrogen was performed into the depletion region of a Schottky diode to undertake the DLTS and MCTS measurements. Proportionality between the formation of two hydrogen-related deep states and a decrease of the vacancy-oxygen center concentration was found together with the appearance of new hydrogen-related energy levels.


2006 ◽  
Vol 508 (1-2) ◽  
pp. 315-317 ◽  
Author(s):  
Hajime Watakabe ◽  
Toshiyuki Sameshima ◽  
Hiroshi Kanno ◽  
Masanobu Miyao

2012 ◽  
Vol 9 (10-11) ◽  
pp. 1992-1995 ◽  
Author(s):  
C. K. Tang ◽  
L. Vines ◽  
B. G. Svensson ◽  
E. V. Monakhov

2005 ◽  
Vol 108-109 ◽  
pp. 109-114
Author(s):  
R. Khalil ◽  
Vitaly V. Kveder ◽  
Wolfgang Schröter ◽  
Michael Seibt

Deep electronic states associated with iron silicide precipitates have been studied by means of deep-level transient spectroscopy. The observed spectra show the characteristic features of bandlike states at extended defects. From the stability of the states on annealing at moderate temperature they are tentatively attributed to precipitate-matrix interfaces.


1993 ◽  
Vol 324 ◽  
Author(s):  
Yutaka Tokuda ◽  
Isao Katoh ◽  
Masayuki Katayama ◽  
Tadasi Hattori

AbstractElectron traps in Czochralski–grown n-type (100) silicon with and without donor annihilation annealing have been studied by deep–level transient spectroscopy. A total of eight electron traps are observed in the concentration range 1010 –1011 cm −3. It is thought that these are grown–in defects during crystal growth cooling period including donor annihilation annealing. It is suggested that two electron traps labelled A2 (Ec–0.34 eV) and A3 (Ec–0.38 eV) of these traps are correlated with oxygen–related defects. It is shown that traps A2 and A3 are formed around 400 ° C and disappear around 500–600 ° C.


Sign in / Sign up

Export Citation Format

Share Document