scholarly journals Axisymmetric balance dynamics of tropical cyclone intensification: Diabatic heating versus surface friction

2018 ◽  
Vol 144 (716) ◽  
pp. 2350-2357 ◽  
Author(s):  
Roger K. Smith ◽  
Shanghong Wang
2011 ◽  
Vol 68 (3) ◽  
pp. 430-449 ◽  
Author(s):  
Hironori Fudeyasu ◽  
Yuqing Wang

Abstract The balanced contribution to the intensification of a tropical cyclone simulated in the three-dimensional, nonhydrostatic, full-physics tropical cyclone model version 4 (TCM4), in particular the spinup of the outer-core circulation, is investigated by solving the Sawyer–Eliassen equation and by computing terms in the azimuthal-mean tangential wind tendency equation. Results demonstrate that the azimuthal-mean secondary circulation (radial and vertical circulation) and the spinup of the midtropospheric outer-core circulation in the simulated tropical cyclone are well captured by balance dynamics. The midtropospheric inflow develops in response to diabatic heating in mid–upper-tropospheric stratiform (anvil) clouds outside the eyewall in active spiral rainbands and transports absolute angular momentum inward to spin up the outer-core circulation. Although the azimuthal-mean diabatic heating rate in the eyewall is the largest, its contribution to radial winds and thus the spinup of outer-core circulation in the middle troposphere is rather weak. This is because the high inertial stability in the inner-core region resists the radial inflow in the middle troposphere, limiting the inward transport of absolute angular momentum. The result thus suggests that diabatic heating in spiral rainbands is the key to the continued growth of the storm-scale circulation.


2018 ◽  
Vol 75 (9) ◽  
pp. 3169-3189 ◽  
Author(s):  
Roger K. Smith ◽  
Michael T. Montgomery ◽  
Hai Bui

Abstract This paper revisits the evolution of an idealized tropical cyclone–like vortex forced by a prescribed distribution of diabatic heating in the context of both inviscid and frictional axisymmetric balance dynamics. Prognostic solutions are presented for a range of heating distributions, which, in most cases, are allowed to contract as the vortex contracts and intensifies. Interest is focused on the kinematic structure and evolution of the secondary circulation in physical space and on the development of regions of symmetric and static instability. The solutions are prolonged beyond the onset of unstable regions by regularizing the Sawyer–Eliassen equation in these regions, but for reasons discussed, the model ultimately breaks down. The intensification rate of the vortex is essentially constant up to the time when regions of instability ensue. This result is in contrast to previous suggestions that the rate should increase as the vortex intensifies because the heating becomes progressively more “efficient” when the local inertial stability increases. The solutions provide a context for reexamining the classical axisymmetric paradigm for tropical cyclone intensification in the light of another widely invoked intensification paradigm by Emanuel, which postulates that the air in the eyewall flows upward and outward along sloping absolute angular momentum (M) surfaces after it exits the frictional boundary layer. The conundrum is that the classical mechanism for spinup requires the air above the boundary layer to move inward while materially conserving M. Insight provided by the balance solutions helps to refine ideas for resolving this conundrum.


2017 ◽  
Vol 74 (8) ◽  
pp. 2575-2591 ◽  
Author(s):  
Junyao Heng ◽  
Yuqing Wang ◽  
Weican Zhou

Abstract The balanced and unbalanced aspects of tropical cyclone (TC) intensification are revisited with the balanced contribution diagnosed with the outputs from a full-physics model simulation of a TC using the Sawyer–Eliassen (SE) equation. The results show that the balanced dynamics can well capture the secondary circulation in the full-physics model simulation even in the inner-core region in the boundary layer. The balanced dynamics can largely explain the intensification of the simulated TC. The unbalanced dynamics mainly acts to prevent the boundary layer agradient flow in the inner-core region from further intensification. Although surface friction can enhance the boundary layer inflow and make the inflow penetrate more inward into the eye region, contributing to the eyewall contraction, the net dynamical effect of surface friction on TC intensification is negative. The sensitivity of the balanced solution to the procedure used to ensure the ellipticity condition for the SE equation is also examined. The results show that the boundary layer inflow in the balanced response is very sensitive to the adjustment to inertial stability in the upper troposphere and the calculation of radial wind at the surface with relatively coarse vertical resolution in the balanced solution. Both the use of the so-called global regularization and the one-sided finite-differencing scheme used to calculate the surface radial wind in the balanced solution as utilized in some previous studies can significantly underestimate the boundary layer inflow. This explains why the boundary layer inflow in the balanced response is too weak in some previous studies.


2011 ◽  
Vol 139 (9) ◽  
pp. 2723-2734 ◽  
Author(s):  
Carl J. Schreck ◽  
John Molinari

The Madden–Julian oscillation (MJO) influences tropical cyclone formation around the globe. Convectively coupled Kelvin waves are often embedded within the MJO, but their role in tropical cyclogenesis remains uncertain. This case study identifies the influences of the MJO and a series of Kelvin waves on the formation of two tropical cyclones. Typhoons Rammasun and Chataan developed in the western North Pacific on 28 June 2002. Two weeks earlier, conditions had been unfavorable for tropical cyclogenesis because of uniform trade easterlies and a lack of organized convection. The easterlies gave way to equatorial westerlies as the convective envelope of the Madden–Julian oscillation moved into the region. A series of three Kelvin waves modulated the development of the westerlies. Cyclonic potential vorticity (PV) developed in a strip between the growing equatorial westerlies and the persistent trade easterlies farther poleward. Rammasun and Chataan emerged from the apparent breakdown of this strip. The cyclonic PV developed in association with diabatic heating from both the MJO and the Kelvin waves. The tropical cyclones also developed during the largest superposition of equatorial westerlies from the MJO and the Kelvin waves. This chain of events suggests that the MJO and the Kelvin waves each played a role in the development of Rammasun and Chataan.


Atmosphere ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1308
Author(s):  
Eric A. Hendricks ◽  
Jonathan L. Vigh ◽  
Christopher M. Rozoff

A minimal modeling system for understanding tropical cyclone intensity and wind structure changes is introduced: Shallow Water Axisymmetric Model for Intensity (SWAMI). The forced, balanced, axisymmetric shallow water equations are reduced to a canonical potential vorticity (PV) production and inversion problem, whereby PV is produced through a mass sink (related to the diabatic heating) and inverted through a PV/absolute–angular–momentum invertibility principle. Because the invertibility principle is nonlinear, a Newton–Krylov method is used to iteratively obtain a numerical solution to the discrete problem. Two versions of the model are described: a physical radius version which neglects radial PV advection (SWAMI-r) and a potential radius version that naturally includes the advection in the quasi-Lagrangian coordinate (SWAMI-R). In idealized numerical simulations, SWAMI-R produces a thinner and more intense PV ring than SWAMI-r, demonstrating the role of axisymmetric radial PV advection in eyewall evolution. SWAMI-R always has lower intensification rates than SWAMI-r because the reduction in PV footprint effect dominates the peak magnitude increase effect. SWAMI-r is next demonstrated as a potentially useful short-term wind structure forecasting tool using the newly added FLIGHT+ Dataset azimuthal means for initialization and forcing on three example cases: a slowly intensifying event, a rapid intensification event, and a secondary wind maximum formation event. Then, SWAMI-r is evaluated using 63 intensifying cases. Even though the model is minimal, it is shown to have some skill in short-term intensity prediction, highlighting the known critical roles of the relationship between the radial structures of the vortex inertial stability and diabatic heating rate. Because of the simplicity of the models, SWAMI simulations are completed in seconds. Therefore, they may be of some use for hurricane nowcasting to short-term (less than 24 h) intensity and structure forecasting. Due to its favorable assumptions for tropical cyclone intensification, a potential use of SWAMI is a reasonable short-term upper-bound intensity forecast if the storm intensifies.


2016 ◽  
Vol 142 (698) ◽  
pp. 2081-2086 ◽  
Author(s):  
Roger K. Smith ◽  
Michael T. Montgomery

2009 ◽  
Vol 66 (5) ◽  
pp. 1250-1273 ◽  
Author(s):  
Yuqing Wang

Abstract A long-standing issue on how outer spiral rainbands affect the structure and intensity of tropical cyclones is studied through a series of numerical experiments using the cloud-resolving tropical cyclone model TCM4. Because diabatic heating due to phase changes is the main driving force of outer spiral rainbands, their effect on the tropical cyclone structure and intensity is evaluated by artificially modifying the heating and cooling rate due to cloud microphysical processes in the model. The view proposed here is that the effect of diabatic heating in outer spiral rainbands on the storm structure and intensity results mainly from hydrostatic adjustment; that is, heating (cooling) of an atmospheric column decreases (increases) the surface pressure underneath the column. The change in surface pressure due to heating in the outer spiral rainbands is significant on the inward side of the rainbands where the inertial stability is generally high. Outside the rainbands in the far field, where the inertial stability is low and internal atmospheric heating is mostly lost to gravity wave radiation and little is left to warm the atmospheric column and lower the local surface pressure, the change in surface pressure is relatively small. This strong radially dependent response reduces the horizontal pressure gradient across the radius of maximum wind and thus the storm intensity in terms of the maximum low-level tangential wind while increasing the inner-core size of the storm. The numerical results show that cooling in the outer spiral rainbands maintains both the intensity of a tropical cyclone and the compactness of its inner core, whereas heating in the outer spiral rainbands decreases the intensity but increases the size of a tropical cyclone. Overall, the presence of strong outer spiral rainbands limits the intensity of a tropical cyclone. Because heating or cooling in the outer spiral rainbands depends strongly on the relative humidity in the near-core environment, the results have implications for the formation of the annular hurricane structure, the development of concentric eyewalls, and the size change in tropical cyclones.


2014 ◽  
Vol 71 (9) ◽  
pp. 3144-3163 ◽  
Author(s):  
Qingqing Li ◽  
Yuqing Wang ◽  
Yihong Duan

Abstract The effects of diabatic heating and cooling in the rapid filamentation zone (RFZ), within which inner rainbands are often active, on tropical cyclone (TC) structure and intensity are investigated based on idealized numerical experiments using a cloud-resolving TC model (TCM4). The results show that removal of heating (cooling) in the RFZ would reduce (increase) the TC intensity. Diabatic heating in the RFZ plays an important role in increasing the inner-core size whereas diabatic cooling tends to limit the inner-core size increase or even reduce the inner-core size of a TC. Removal of both diabatic heating and cooling in the RFZ greatly suppresses the activity of inner rainbands but leads to the quasi-periodic development of a convective ring immediately outside of the inner core. A similar convective ring also develops in an experiment with the removal of diabatic heating only in the RFZ. With diabatic cooling removed only in the RFZ, an annular-hurricane-like structure arises with the outer rainbands largely suppressed.


2013 ◽  
Vol 7 (1) ◽  
pp. 110-118
Author(s):  
Masanori¶ Yamasaki

This paper describes results from numerical experiments which have been performed to understand the effects of the ice microphysics, surface friction, and surface heat flux on tropical cyclone (TC) formation. This study uses the author’s non-hydrostatic model that intends to resolve cumulus convection. However, the horizontal grid size is taken to be somewhat large; 2 km in an area of 600 km x 600 km. A non-uniform coarse grid is used in the surrounding area with 4,000-km square. Several buoyancy perturbations arranged in the west-east direction, and a weak vortex with the maximum wind speed of 5 m s–1 are given at the initial time of the numerical time integrations. It is confirmed from two numerical experiments with and without ice microphysics that the development of a vortex is slower, and TC formation is delayed, in the presence of ice microphysics. It is also confirmed that a vortex can develop even without surface friction. It is shown that a strong vortex with the maximum wind speed of 20~25 m s–1 can be obtained. As expected, however, no eye forms, and further development does not occur. That is, it is confirmed that surface friction is indispensable to eye formation and a very strong TC having an eye. As for the third concern of this study, it is shown that a vortex with the maximum wind speed of about 5 m s–1 does not develop in the absence of the surface heat flux. That is, the surface heat flux plays an important role even in a weak vortex. Important backgrounds and understandings that are concerned with these results are described, based on studies on TCs in the past 50 years.


Sign in / Sign up

Export Citation Format

Share Document