Properties of a Newly Identified Acetyl Esterase and Its Degradation of Diisobutyl Phthalate

2020 ◽  
Vol 5 (42) ◽  
pp. 13278-13284
Author(s):  
Ziran Guan ◽  
Shuang Dai ◽  
Qian Yao ◽  
Wei Zong ◽  
Zujun Deng ◽  
...  
Keyword(s):  
2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Avijit Dey ◽  
Shyam Sundar Paul ◽  
Puran Chand Lailer ◽  
Satbir Singh Dahiya

AbstractEnteric methane production contributes significantly to the greenhouse gas emission globally. Although, buffaloes are integral part of livestock production in Asian countries, contributing milk, meat and draft power, the contribution of enteric methane to environmental pollution attracts attention. The present study investigated the efficacy of garlic (Allium sativum) oil in reducing enteric methane production from buffaloes (Bubalus bubalis) by in vitro rumen fermentation. Garlic oil (GOL) was tested at four concentrations [0 (Control), 33.33 µl (GOL-1), 83.33 µl (GOL-2) and 166.66 µl (GOL-3) per litre of buffered rumen fluid] in 100-ml graduated glass syringes and incubated at 39℃ for 24 h for in vitro rumen fermentation study. Supplementation of GOL-1 increased (p < 0.05) total gas production in comparison with GOL-3; however, it remained comparable (p > 0.05) with control and GOL-2. Graded doses of garlic oil inclusions reduced (p < 0.001) methane concentration (%) in total gas and total methane production (ml/g DM), irrespective of concentrations. The feed degradability, volatile fatty acids and microbial biomass production (MBP) were not affected (p > 0.05) by GOL-1, but these tended to decrease in GOL-2 with marked reduction (p < 0.01) in GOL-3. The decrease (p < 0.01) in NH3–N concentration in fermentation fluid in the presence of garlic oil, irrespective of concentration, suggests reduced deamination by inhibiting rumen proteolytic bacterial population. The activities of ruminal fibrolytic enzymes (CMCase, xylanase, β-glucosidase, acetyl esterase) were not affected by lower dose (GOL-1) of garlic oil; however, reduction (p < 0.05) of these enzymes activity in rumen liquor was evident at higher doses (GOL-2 and GOL-3) of supplementation. This study shows positive impact of garlic oil supplementation at low dose (33.33 µl/l of rumen fluid) in reducing enteric methane production, thereby, abatement of environmental pollution without affecting feed digestibility.


2016 ◽  
Vol 477 (3) ◽  
pp. 383-387 ◽  
Author(s):  
Keiko Uechi ◽  
Saori Kamachi ◽  
Hironaga Akita ◽  
Shouhei Mine ◽  
Masahiro Watanabe

1999 ◽  
Vol 65 (2) ◽  
pp. 694-697 ◽  
Author(s):  
Khanok Ratanakhanokchai ◽  
Khin Lay Kyu ◽  
Morakot Tanticharoen

ABSTRACT An alkaliphilic bacterium, Bacillus sp. strain K-1, produces extracellular xylanolytic enzymes such as xylanases, β-xylosidase, arabinofuranosidase, and acetyl esterase when grown in xylan medium. One of the extracellular xylanases that is stable in an alkaline state was purified to homogeneity by affinity adsorption-desorption on insoluble xylan. The enzyme bound to insoluble xylan but not to crystalline cellulose. The molecular mass of the purified xylan-binding xylanase was estimated to be approximately 23 kDa. The enzyme was stable at alkaline pHs up to 12. The optimum temperature and optimum pH of the enzyme activity were 60°C and 5.5, respectively. Metal ions such as Fe2+, Ca2+, and Mg2+ greatly increased the xylanase activity, whereas Mn2+ strongly inhibited it. We also demonstrated that the enzyme could hydrolyze the raw lignocellulosic substances effectively. The enzymatic products of xylan hydrolysis were a series of short-chain xylooligosaccharides, indicating that the enzyme was an endoxylanase.


Cells ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 741 ◽  
Author(s):  
Sumeyye Cavdarli ◽  
Philippe Delannoy ◽  
Sophie Groux-Degroote

O-acetylation of sialic acid residues is one of the main modifications of gangliosides, and modulates ganglioside functions. O-acetylation of gangliosides is dependent on sialyl-O-acetyltransferases and sialyl-O-acetyl-esterase activities. CAS1 Domain-Containing Protein 1 (CASD1) is the only human sialyl-O-acetyltransferases (SOAT) described until now. O-acetylated ganglioside species are mainly expressed during embryonic development and in the central nervous system in healthy adults, but are re-expressed during cancer development and are considered as markers of cancers of neuroectodermal origin. However, the specific biological roles of O-acetylated gangliosides in developing and malignant tissues have not been extensively studied, mostly because of the requirement of specific approaches and tools for sample preparation and analysis. In this review, we summarize our current knowledge of ganglioside biosynthesis and expression in normal and pathological conditions, of ganglioside O-acetylation analysis and expression in cancers, and of the possible use of O-acetylated gangliosides as targets for cancer immunotherapy.


2016 ◽  
Vol 9 (4) ◽  
pp. 561-570
Author(s):  
Zhiwei Wu ◽  
Jing Chen ◽  
Zunhao Zhang ◽  
Lina Ma ◽  
Tianhui Xu ◽  
...  

Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 1258-1258
Author(s):  
Xin Kai ◽  
Vasant Chellappa ◽  
Jesse Moya ◽  
Kendra N. Taylor ◽  
Ephraim P. Hochberg ◽  
...  

Abstract Abstract 1258 Poster Board I-280 Background An inhibitory signaling pathway involving sialic acid 9-O-acetyl esterase (SIAE), sialic acid binding lectins (Siglecs) particularly Siglec-2/CD22, the Lyn tyrosine kinase, and the SH2 domain containing tyrosine phosphatase, SHP-1, attenuates B cell receptor signaling and sets a threshold for B cell activation. A key step in the process is the requirement that SIAE access N-glycans on Siglec ligands and remove 9-O-acetyl groups from terminal αa2,6 linked sialic acid moieties. Siglec-ligand interaction is followed by phosphorylation of ITIM tyrosines on CD22 by Lyn, and the recruitment of SHP-1 by CD22 resulting in signal attenuation (Cariappa et al., J.Exp.Med.2009, 206, 125). While Lyn has both positive and negative signaling functions, knockout mice studies suggest that inhibitory functions are dominant. Previous studies have shown that CLL cells overexpress active Lyn at the protein level and that Lyn is localized to sites beyond the plasma membrane. Although cell surface expression of CD22 is reduced in CLL, it is not known if CD22 can be accessed in CLL cells by promiscuously active Lyn. We sought to ask if cancer progression in CLL involves the evolution of mechanisms to evade inhibitory signaling, thus tipping the balance towards positive, pro-proliferative signaling by Lyn. Methods CLL B cells from patient and control subjects were isolated. Immunoprecipitation and Western blot approaches were used to quantitate the total cellular levels of Lyn and CD22αa and β proteins at the protein level, the ratio of CD22 phosphorylated on an inhibitory tyrosine to total CD22, recruitment of SHP-1 by CD22, the activation of Syk, the expression of c-Cbl and the recruitment of PI3K by c-Cbl in CLL and control B cells. Results A modest decrease in total CD22αa and β proteins was observed in CLL but a dramatic reduction in the proportion of ITIM-phosphorylated CD22, and a reduction in the recruitment of SHP-1 by CD22 in CLL B cells. Decreased inhibitory signaling in CLL correlates with an increase in active Syk. An increase in c-Cbl protein levels was observed and an increased recruitment of p85PI3K was observed specifically in Zap-70 positive CLL. Conclusions Defective inhibitory signaling may contribute to disease progression in CLL. This defect probably results from the inability of CD22 to access 9-O-deacetylated ligands even in the presence of active Lyn. Enhanced constitutive BCR signaling prevails in all CLL patients but in Zap70+ CLL patients p85PI3K is more readily recruited by c-Cbl. Disclosures Hochberg: Biogen-Idec: Speakers Bureau; Genentech: Speakers Bureau; Amgen: Speakers Bureau; Enzon: Speakers Bureau.


2017 ◽  
Vol 83 (9) ◽  
Author(s):  
Ping-Yi Li ◽  
Qiong-Qiong Yao ◽  
Peng Wang ◽  
Yi Zhang ◽  
Yue Li ◽  
...  

ABSTRACT Microbial esterases play important roles in deep-sea organic carbon degradation and cycling. Although they have similar catalytic triads and oxyanion holes, esterases are hydrolases and homoserine transacetylases (HTAs) are transferases. Because two HTA homologs were identified as acetyl esterases, the HTA family was recently divided into the bona fide acetyltransferase subfamily and the acetyl esterase subfamily. Here, we identified and characterized a novel HTA-like esterase, Est22, from a deep-sea sedimentary metagenomic library. Est22 could efficiently hydrolyze esters with acyl lengths of up to six carbon atoms but had no transacetylase activity, which is different from HTAs and HTA-like acetyl esterases. Phylogenetic analysis also showed that Est22 and its homologs form a separate branch of the HTA family. We solved the structures of Est22 and its L374D mutant and modeled the structure of the L374D mutant with p-nitrophenyl butyrate. Based on structural, mutational, and biochemical analyses, Phe71 and Met176 in the oxyanion hole and Arg294 were revealed to be the key substrate-binding residues. A detailed structural comparison indicated that differences in their catalytic tunnels lead to the different substrate specificities of Est22 and the other two HTA subfamilies. Biochemical and sequence analyses suggested that Est22 homologs may have the same substrate recognition and catalysis mechanisms as Est22. Due to the significant differences in sequences, structures, and substrate specificities between Est22 (and its homologs) and the other two HTA subfamilies, we suggest that Est22 and its homologs represent a new subfamily in the HTA family. IMPORTANCE Microbial esterases play important roles in the turnover of organic carbon in the deep sea. Esterases and HTAs represent two groups of α/β hydrolases. Esterases catalyze the hydrolysis of simple esters and are widely used in the pharmaceutical and agrochemical industries, while HTAs catalyze the transfer of an acetyl group from acetyl-coenzyme A (CoA) to homoserine and are essential for microbial growth. Here, we report on a novel HTA-like esterase, Est22, from a deep-sea sediment. Because of the significant differences in sequences, structures, and substrate specificities of HTAs and HTA-like acetyl esterases, Est22 and its homologs represent a new subfamily in the HTA family. This study offers new knowledge regarding marine esterases.


Sign in / Sign up

Export Citation Format

Share Document