Synthesis of Nano‐Cr/Mn Composite Metal Oxides‐SBA‐15 Material and Its Catalytic Performance in Aerobic Oxidations of Benzyl Alcohols

2021 ◽  
Vol 6 (39) ◽  
pp. 10542-10547
Author(s):  
Tangming Fu ◽  
Ning Yang ◽  
Jiawen Hu ◽  
Minglong Qiao ◽  
Chunmei Li ◽  
...  
2017 ◽  
Vol 41 (22) ◽  
pp. 13377-13381 ◽  
Author(s):  
Arijit Saha ◽  
Soumen Payra ◽  
Subhash Banerjee

Silica (SiO2) supported bimetallic copper/silver nanoparticles (Cu/Ag@SiO2NPs) were synthesized for clean oxidation of benzoins/benzyl alcohols. All the reactions were fast, clean and high yielding (95–99%) and the Cu/Ag@SiO2nano-catalyst was reused eight times without loss of its catalytic performance.


2011 ◽  
Vol 356-360 ◽  
pp. 1528-1534
Author(s):  
Wei Fang Dong

A series of non-precious metal oxides catalysts were prepared for low-temperature selective catalytic reduction (SCR) of NOx with NH3 in a fixed bed reactor. The catalytic performance was evaluated by the removal efficiency of NOx and N2selectivity which were respectively detected by flue gas analyzer and flue gas chromatograph. Furthermore, the components of gas products from the above experiments were analysed with 2010 GC-MS. The results illustrated that the MnO2exhibited the highest NOx conversion to 95.46% and the highest selectivity of N2to 100% at temperature of 393K, then followed ZrO2, Al2O3and Fe2O3.


2015 ◽  
Vol 5 (3) ◽  
pp. 1568-1579 ◽  
Author(s):  
Yuxian Gao ◽  
Kangmin Xie ◽  
Wendong Wang ◽  
Shiyang Mi ◽  
Ning Liu ◽  
...  

MWCNT supported CuO–CeO2 catalysts show enhanced performance in CO-PROX due to unusual structure features induced by interactions between metal oxides and MWCNT.


2010 ◽  
Vol 178 ◽  
pp. 65-70 ◽  
Author(s):  
Sheng Rui Xu ◽  
Qin Shuai ◽  
Jin Hua Cheng ◽  
Xiao Ge Wang

A new catalyst of gold supported on nanometal oxide for oxidation of SO2 was developed. Deposition-precipitation method was used to prepare gold-based catalysts. The catalytic activity of the catalysts was evaluated by determining the concentration of SO2 with gas chromatography under reaction temperature from 100 to 700°C. The results showed that there was an enhancement of catalytic activity when gold nanoparticles were dispersed on the surface of nano-metal oxides, furthermore, γ-Fe2O3 showed the highest activity as the support of the colloidal gold supported catalysts among the nanometal oxides including γ-Fe2O3, Fe2O3, ZnO, and Al2O3. It was also found that water vapour in the reaction enhanced the catalytic activity of Au/γ-Fe2O3. The Au/γ-Fe2O3 was characterized by XRD and FTIR methods, which indicated that the gold nanoparticles were dispersed on the γ-Fe2O3 support and sulfate species were formed on the surface of catalysts.


Catalysts ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 505 ◽  
Author(s):  
Xiaoli Wang ◽  
Gongde Wu ◽  
Tongfa Jin ◽  
Jie Xu ◽  
Shihao Song

A series of transition metal oxides or mixed oxides supported nano-Au catalysts were prepared for the selective oxidation of glycerol to glyceric acid using 3% H2O2. It was found that the composition and structure of supports significantly influenced the catalytic performance of catalysts. The mesoporous trimetal mixed oxide (CuNiAlO) supported nano-Au catalysts were more active in comparison with the others. In the present catalytic system, the highest glycerol conversion was 90.5%, while the selectivity of glyceric acid could reach 72%. Moreover, the catalytic performance remained after 11 times of reaction.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xinghui Liu ◽  
Shibo Xi ◽  
Hyunwoo Kim ◽  
Ashwani Kumar ◽  
Jinsun Lee ◽  
...  

AbstractThe poor catalyst stability in acidic oxidation evolution reaction (OER) has been a long-time issue. Herein, we introduce electron-deficient metal on semiconducting metal oxides-consisting of Ir (Rh, Au, Ru)-MoO3 embedded by graphitic carbon layers (IMO) using an electrospinning method. We systematically investigate IMO’s structure, electron transfer behaviors, and OER catalytic performance by combining experimental and theoretical studies. Remarkably, IMO with an electron-deficient metal surface (Irx+; x > 4) exhibit a low overpotential of only ~156 mV at 10 mA cm−2 and excellent durability in acidic media due to the high oxidation state of metal on MoO3. Furthermore, the proton dissociation pathway is suggested via surface oxygen serving as proton acceptors. This study suggests high stability with high catalytic performance in these materials by creating electron-deficient surfaces and provides a general, unique strategy for guiding the design of other metal-semiconductor nanocatalysts.


Catalysts ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 71
Author(s):  
Yuxin Chen ◽  
Dan Dang ◽  
Binhang Yan ◽  
Yi Cheng

Composite catalysts of mixed metal oxides were prepared by mixing a phase-pure M1 MoVNbTeOx with anatase-phase TiO2. Two methods were used to prepare the composite catalysts (the simple physically mixed or sol-gel method) for the improvement of the catalytic performance in the oxidative dehydrogenation of ethane (ODHE) process. The results showed that TiO2 particles with a smaller particle size were well dispersed on the M1 surface for the sol-gel method, which presented an excellent activity for ODHE. At the same operating condition (i.e., the contact time of 7.55 gcat·h/molC2H6 and the reaction temperature of 400 °C), the M1-TiO2-SM and M1-TiO2-PM achieved the space time yields of 0.67 and 0.52 kgC2H4/kgcat/h, respectively, which were about ~76% and ~35% more than that of M1 catalyst (0.38 kgC2H4/kgcat/h), respectively. The BET, ICP, XRD, TEM, SEM, H2-TPR, C2H6-TPSR, and XPS techniques were applied to characterize the catalysts. It was noted that the introduction of TiO2 raised the V5+ abundance on the catalyst surface as well as the reactivity of active oxygen species, which made contribution to the promotion of the catalytic performance. The surface morphology and crystal structure of used catalysts of either M1-TiO2-SM or M1-TiO2-PM remained stable as each fresh catalyst after 24 h time-on-stream tests.


Sign in / Sign up

Export Citation Format

Share Document