Layer-By-Layer Electropeeling of Organic Conducting Material Imaged In Real Time

Small ◽  
2008 ◽  
Vol 5 (2) ◽  
pp. 214-220 ◽  
Author(s):  
Carmen Munuera ◽  
Josep Puigmartí-Luis ◽  
Markos Paradinas ◽  
Luis Garzón ◽  
David B. Amabilino ◽  
...  
2015 ◽  
Vol 87 (7) ◽  
pp. 3856-3863 ◽  
Author(s):  
Fransiska Sri Herwahyu Krismastuti ◽  
Haider Bayat ◽  
Nicolas H. Voelcker ◽  
Holger Schönherr

Talanta ◽  
2019 ◽  
Vol 202 ◽  
pp. 336-341 ◽  
Author(s):  
Shuang Wang ◽  
Shasha Lu ◽  
Jiahui Zhao ◽  
Jianshe Huang ◽  
Xiurong Yang

1994 ◽  
Vol 6 (4) ◽  
pp. 307-311 ◽  
Author(s):  
Thomas Schimmel ◽  
Bettina Winzer ◽  
Rainer Kemnitzer ◽  
Thomas Koch ◽  
Jürgen Küppers ◽  
...  

Author(s):  
Yong Li ◽  
Hao Tong ◽  
Jing Cui ◽  
Yang Wang

In electro discharge machining (EDM) for 3D micro structures, the electrode wear is serious and it needs to be compensated in process. To obtain a better balance of the machining accuracy and efficiency, a servo scanning EDM method is proposed for 3D micro structures, in which the electrode wear is compensated on real-time by controlling the discharge gap constant. It is supposed reasonably that the machining depth of each layer in servo scanning EDM is consistent if discharge gap is kept preferably. The servo scanning EDM strategies include the model design by Pro/Engineer (Pro/E), the plan and simulation of scanning path, and the machining process. The 3D micro structures are machined by scanning layer-by-layer under servo control of the electrode with monitoring discharge gap signal. The CAM, gap servo control, and real-time electrode wear compensating are integrated into the machining system. The evaluation experiments of servo scanning EDM and the typical machining experiments of 3D micro structures have been carried out. The machining results show that the electro discharge in the servo scanning EDM is more stable. Servo scanning micro EDM is propitious to improve machining accuracy and efficiency in 3D micro structures.


1992 ◽  
Vol 295 ◽  
Author(s):  
David J. Smith ◽  
R. Vogl ◽  
Ping Lu

AbstractOnline video recording with a high-resolution electron microscope has been used to study real-time atomic events occurring at cadmium telluride surfaces over a range of temperatures from 27°C to 500°C. Using the profile imaging mode of observation, different types of surface activity have been documented on (001), (111) and (110) surfaces. For example, the (001) surfaces displayed reversible phase transformations between 2× 1 and 3×1 reconstructions at a transition temperature of about 200°C. The (111) surfaces exhibited sublimation by a ledge mechanism that depended upon the terminating surface: layer-by-layer removal invariably occurred for (110) surface terminations whereas bilayer removal was usually seen for terminations by (100) surfaces. Finally, the (110) surface rearranged by a hopping mechanism, but no substantial loss of material was observed.


2021 ◽  
Author(s):  
ling zhang ◽  
Wenhe Liao ◽  
Tingting Liu ◽  
Huiliang Wei ◽  
Changchun Zhang

Abstract The printing quality of the laser powder bed fusion (LPBF) components largely depends on the presence of various defects such as massive porosity. Thus, the efficient elimination of pores is an important factor to the production of a sound LPBF product. In this work, the efficacy of two in situ laser remelting approaches on the elimination of pores during LPBF of a titanium alloy Ti-6.5Al-3.5Mo-l.5Zr-0.3Si (TC11) were assessed using both experimental and computational methods. These two remelting methods are the surface remelting, and the layer-by-layer printing and remelting. A multi-track and multi-layer phenomenological model was established to compute the evolution of pores with the temperature and velocity fields. The results showed that surface remelting with a high laser power such as 180 W laser can effectively eliminate pores within three deposited layers. However, such a remelting cannot reach defects in deeper regions. Alternatively, the layer-by-layer remelting with a laser power of 180 W can effectively eliminate the pores formed in the previous layer in real time. The results obtained from this work can provide useful guidance for the in situ control of printing defects supported by the real time monitoring, feedback and operation systems of the intelligent LPBF equipment.


2021 ◽  
Author(s):  
Woosung Kang ◽  
Kilho Lee ◽  
Jinkyu Lee ◽  
Insik Shin ◽  
Hoon Sung Chwa

2021 ◽  
Author(s):  
Nazanin Jahani ◽  
◽  
Joaquín Ambía ◽  
Kristian Fossum ◽  
Sergey Alyaev ◽  
...  

The cost of drilling wells on the Norwegian Continen-tal Shelf are extremely high, and hydrocarbon reservoirs are often located in spatially complex rock formations. Optimized well placement with real-time geosteering is crucial to efficiently produce from such reservoirs and reduce exploration and development costs. Geosteering is commonly assisted by repeated formation evaluation based on the interpretation of well logs while drilling. Thus, reliable computationally efficient and robust work-flows that can interpret well logs and capture uncertain-ties in real time are necessary for successful well place-ment. We present a formation evaluation workflow for geosteering that implements an iterative version of an ensemble-based method, namely the approximate Leven-berg Marquardt form of the Ensemble Randomized Max-imum Likelihood (LM-EnRML). The workflow jointly estimates the petrophysical and geological model param-eters and their uncertainties. In this paper the demon-strate joint estimation of layer-by-layer water saturation, porosity, and layer-boundary locations and inference of layers’ resistivities and densities. The parameters are estimated by minimizing the statistical misfit between the simulated and the observed measurements for several logs on different scales simultaneously (i.e., shallow-sensing nuclear density and shallow to extra-deep EM logs). Numerical experiments performed on a synthetic exam-ple verified that the iterative ensemble-based method can estimate multiple petrophysical parameters and decrease their uncertainties in a fraction of time compared to clas-sical Monte Carlo methods. Extra-deep EM measure-ments are known to provide the best reliable informa-tion for geosteering, and we show that they can be in-terpreted within the proposed workflow. However, we also observe that the parameter uncertainties noticeably decrease when deep-sensing EM logs are combined with shallow sensing nuclear density logs. Importantly the es-timation quality increases not only in the proximity of the shallow tool but also extends to the look ahead of the extra-deep EM capabilities. We specifically quantify how shallow data can lead to significant uncertainty re-duction of the boundary positions ahead of bit, which is crucial for geosteering decisions and reservoir mapping.


Author(s):  
G.R. Low ◽  
P.K. Tan ◽  
T.H. Ng ◽  
H.H. Yap ◽  
H. Feng ◽  
...  

Abstract Top-down, layer-by-layer de-layering inspection with a mechanical polisher and serial cross-sectional Focused Ion Beam (XFIB) slicing are two common approaches for physical failure analysis (PFA). This paper uses XFIB to perform top-down, layer-by-layer de-layering followed by Scanning Electron Microscope (SEM) inspection. The advantage of the FIB-SEM de-layering technique over mechanical de-layering is better control of the de-layering process. Combining the precise milling capability of the FIB with the real-time imaging capability of the SEM enables the operator to observe the de-layering as it progresses, minimizing the likelihood of removing either too much or too little material. Furthermore, real time SEM view during top-down XFIB de-layering is able to provide a better understanding of how the defects are formed and these findings could then be feedback to the production line for process improvement.


Sign in / Sign up

Export Citation Format

Share Document