Passive Radiative Cooling Enables Improved Performance in Wearable Thermoelectric Generators

Small ◽  
2022 ◽  
pp. 2106875
Author(s):  
Yijie Liu ◽  
Shuaihang Hou ◽  
Xiaodong Wang ◽  
Li Yin ◽  
Zuoxu Wu ◽  
...  
2020 ◽  
Vol 117 (16) ◽  
pp. 163903
Author(s):  
Bin Zhao ◽  
Gang Pei ◽  
Aaswath P. Raman

Author(s):  
Siyi Zhou ◽  
Bahgat G. Sammakia ◽  
Bruce White ◽  
Peter Borgesen ◽  
Cheng Chen

Constrained by low thermodynamic efficiencies, thermoelectric generators (TEGs) require a comparatively large amount of heat to produce a given quantity of electricity. Therefore, further improvements in thermoelectric designs are needed. In this paper, a coupled-field thermoelectric model, which presents a rigorous interfacial energy balance by capturing Joule heating, Seebeck, Peltier and Thomson effects, is developed to gauge the feasibility of the two promising solutions to enhance power generated by the TEGs, utilizing the commercial FEA package COMSOL™ through the Physics Interface Builder. First, the patterned topography on wall surfaces is implemented and the improved performance has been observed by introducing stirred flows into the heat exchangers and equalizing the temperature across the channels. Referring to the analysis, approximately 10% enhancement in power generation can be addressed for the base-relief TEG. Second, the prospect of increasing the thermal transport capability of water by loading CuO nanoparticles in the TEGs with multi-scale heat exchangers is explored. It is found that the conversion performance of the water/CuO nanofluid-based TEG is superior when compared to the water-based TEG at the micro-scale, where the flow rate is relatively low. The significant insight is gained to fabricate the ideal TEGs with optimum power performance.


Author(s):  
Gertrude. F. Rempfer

Optimum performance in electron and ion imaging instruments, such as electron microscopes and probe-forming instruments, in most cases depends on a compromise either between imaging errors due to spherical and chromatic aberrations and the diffraction error or between the imaging errors and the current in the image. These compromises result in the use of very small angular apertures. Reducing the spherical and chromatic aberration coefficients would permit the use of larger apertures with resulting improved performance, granted that other problems such as incorrect operation of the instrument or spurious disturbances do not interfere. One approach to correcting aberrations which has been investigated extensively is through the use of multipole electric and magnetic fields. Another approach involves the use of foil windows. However, a practical system for correcting spherical and chromatic aberration is not yet available.Our approach to correction of spherical and chromatic aberration makes use of an electrostatic electron mirror. Early studies of the properties of electron mirrors were done by Recknagel. More recently my colleagues and I have studied the properties of the hyperbolic electron mirror as a function of the ratio of accelerating voltage to mirror voltage. The spherical and chromatic aberration coefficients of the mirror are of opposite sign (overcorrected) from those of electron lenses (undercorrected). This important property invites one to find a way to incorporate a correcting mirror in an electron microscope. Unfortunately, the parts of the beam heading toward and away from the mirror must be separated. A transverse magnetic field can separate the beams, but in general the deflection aberrations degrade the image. The key to avoiding the detrimental effects of deflection aberrations is to have deflections take place at image planes. Our separating system is shown in Fig. 1. Deflections take place at the separating magnet and also at two additional magnetic deflectors. The uncorrected magnified image formed by the objective lens is focused in the first deflector, and relay lenses transfer the image to the separating magnet. The interface lens and the hyperbolic mirror acting in zoom fashion return the corrected image to the separating magnet, and the second set of relay lenses transfers the image to the final deflector, where the beam is deflected onto the projection axis.


2020 ◽  
Vol 640 ◽  
pp. A53
Author(s):  
L. Löhnert ◽  
S. Krätschmer ◽  
A. G. Peeters

Here, we address the turbulent dynamics of the gravitational instability in accretion disks, retaining both radiative cooling and irradiation. Due to radiative cooling, the disk is unstable for all values of the Toomre parameter, and an accurate estimate of the maximum growth rate is derived analytically. A detailed study of the turbulent spectra shows a rapid decay with an azimuthal wave number stronger than ky−3, whereas the spectrum is more broad in the radial direction and shows a scaling in the range kx−3 to kx−2. The radial component of the radial velocity profile consists of a superposition of shocks of different heights, and is similar to that found in Burgers’ turbulence. Assuming saturation occurs through nonlinear wave steepening leading to shock formation, we developed a mixing-length model in which the typical length scale is related to the average radial distance between shocks. Furthermore, since the numerical simulations show that linear drive is necessary in order to sustain turbulence, we used the growth rate of the most unstable mode to estimate the typical timescale. The mixing-length model that was obtained agrees well with numerical simulations. The model gives an analytic expression for the turbulent viscosity as a function of the Toomre parameter and cooling time. It predicts that relevant values of α = 10−3 can be obtained in disks that have a Toomre parameter as high as Q ≈ 10.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (9) ◽  
pp. 581-586 ◽  
Author(s):  
RICARDO B. SANTOS ◽  
PETER W. HART ◽  
DOUGLAS C. PRYKE ◽  
JOHN VANDERHEIDE

The WestRock mill in Covington, VA, USA, initiated a long term diagnostic and optimization program for all three of its bleaching lines. Benchmarking studies were used to help identify optimization opportunities. Capital expenditures for mixing improvement, filtrate changes, equipment repair, other equipment changes, and species changes were outside the scope of this work. This focus of this paper is the B line, producing southern hardwood pulp in a D(EP)DD sequence at 88% GE brightness. The benchmarking study and optimization work identified the following opportunities for improved performance: nonoptimal addition of caustic and hydrogen peroxide to the (EP) stage, carryover of D0 filtrate to the (EP) stage, and carryover of (EP) filtrate to the D1 stage. As a result of actions the mill undertook to address these opportunities, D0 kappa factor decreased about 5%, sodium hydroxide consumption in the (EP) stage decreased about 35%, chlorine dioxide consumption in the D1 stage decreased about 25%, and overall bleaching cost decreased about 15%.


2015 ◽  
Vol 135 (12) ◽  
pp. 1237-1238
Author(s):  
Yasuhiko Neba ◽  
Hirokazu Matsumoto ◽  
Yuta Kawasaki

Sign in / Sign up

Export Citation Format

Share Document