Experimental Validation and Numerical Analysis of the Swirling Flow in a Submerged Entry Nozzle and Mold by Using a Reverse TurboSwirl in a Billet Continuous Casting Process

2016 ◽  
Vol 88 (7) ◽  
pp. 1600339 ◽  
Author(s):  
Haitong Bai ◽  
Mikael Ersson ◽  
Pär Jönsson
2011 ◽  
Vol 295-297 ◽  
pp. 1284-1288 ◽  
Author(s):  
De Wei Li ◽  
Zhi Jian Su ◽  
Li Wei Sun ◽  
Katsukiyo Marukawa ◽  
Ji Cheng He

Swirling flow in an immersion nozzle is effective on improving quality of casting block and casting speed in continuous casting process of steel. However, a refractory swirl blade installed in the nozzle is liable to cause clogging, which limit the application of the process. In this study a new process is proposed, that is a rotating electromagnetic field is set up around an immersion nozzle to induce a swirling flow in it by Lorentz force. New types of swirling flow electromagnetic generator are proposed and the effects of the structure of the generator, the coil current intensity and frequency on the magnetic field and on the flow field in the immersion nozzle are numerically analyzed.


2008 ◽  
Vol 105 (2) ◽  
pp. 72-79 ◽  
Author(s):  
Shihong Liu ◽  
Xinhua Wang ◽  
Xiangjun Zuo ◽  
Yufeng Wang ◽  
Lifeng Zhang ◽  
...  

Metals ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 66 ◽  
Author(s):  
Wenjie Zhang ◽  
Sen Luo ◽  
Yao Chen ◽  
Weiling Wang ◽  
Miaoyong Zhu

Electromagnetic stirring in mold (M-EMS) has been widely used in continuous casting process to improve the solidification quality of the steel strand. In the present study, a 3D multi-physical-field mathematical model was developed to predict the macro transport phenomena in continuous casting mold with M-EMS using ANSYS commercial software, and was adopted to investigate the effect of current intensity (0, 150, 200, and 240 A) on the heat, momentum, and species transports in the billet continuous casting mold with a size of 160 mm × 160 mm. The results show that when the M-EMS is on, the horizontal swirling flow appears and shifts the high-temperature zone upward. With the increase of current intensity, two swirling flows form on the longitudinal section of continuous casting mold and become more intensive, and the flow velocity of the molten steel at the solidification front increases. Thus, the wash effects of the fluid flow on the initial solidified shell become intensive, resulting in a thinner shell thickness at the mold exit and a significant negative segregation of carbon at the billet subsurface.


2001 ◽  
Vol 41 (Suppl) ◽  
pp. S47-S51 ◽  
Author(s):  
Shinichiro Yokoya ◽  
Shigeo Takagi ◽  
Manabu Iguchi ◽  
Katsukiyo Marukawa ◽  
Shigeta Hara

Sign in / Sign up

Export Citation Format

Share Document