Chapter 8: Perspectives for the use of biological indicators for the assessment of radiation induced responses and impairments: What is the status of molecular and cell biology approaches relevant to radiation effects assessment?

Stem Cells ◽  
1995 ◽  
Vol 13 (S1) ◽  
pp. 318-322 ◽  
Author(s):  
U. Plappert ◽  
L. Rutzen‐Loesevitz
2021 ◽  
Author(s):  
Side Song ◽  
Guozhu Liu ◽  
Qi He ◽  
Xiang Gu ◽  
Genshen Hong ◽  
...  

Abstract In this paper, the combined effects of cycling endurance and radiation on floating gate memory cell are investigated in detail, the results indicate that: 1.The programmed flash cells with a prior appropriate number of program and erase cycling stress exhibit much smaller threshold voltage shift than their counterpart in response to radiation, which is mainly ascribed to the recombination of trapped electrons (introduced by cycling stress) and trapped holes (introduced by irradiation) in the oxide surrounding the floating gate; 2.The radiation induced transconductance degradation in prior cycled flash cell is more severe than those without cycling stress in both of the programmed state and erased state; 3. Radiation is more likely to induce interface generation in programmed state than in erased state. This paper will be useful in understanding the issues involved in cycling endurance and radiation effects as well as in designing radiation hardened floating gate memory cells.


Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3041
Author(s):  
Ren Jie Tuieng ◽  
Sarah H. Cartmell ◽  
Cliona C. Kirwan ◽  
Michael J. Sherratt

Exposure to sub-lethal doses of ionising and non-ionising electromagnetic radiation can impact human health and well-being as a consequence of, for example, the side effects of radiotherapy (therapeutic X-ray exposure) and accelerated skin ageing (chronic exposure to ultraviolet radiation: UVR). Whilst attention has focused primarily on the interaction of electromagnetic radiation with cells and cellular components, radiation-induced damage to long-lived extracellular matrix (ECM) proteins has the potential to profoundly affect tissue structure, composition and function. This review focuses on the current understanding of the biological effects of ionising and non-ionising radiation on the ECM of breast stroma and skin dermis, respectively. Although there is some experimental evidence for radiation-induced damage to ECM proteins, compared with the well-characterised impact of radiation exposure on cell biology, the structural, functional, and ultimately clinical consequences of ECM irradiation remain poorly defined.


2011 ◽  
Vol 26 (3) ◽  
pp. 254-260 ◽  
Author(s):  
Milos Vujisic ◽  
Dusan Matijasevic ◽  
Edin Dolicanin ◽  
Predrag Osmokrovic

This paper investigates possible effects of alpha particle and ion beam irradiation on the properties of the superinsulating phase, recently observed in titanium nitride films, by using numerical simulation of particle transport. Unique physical properties of the superinsulating state are considered by relying on a two-dimensional Josephson junction array as a model of material structure. It is suggested that radiation-induced change of the Josephson junction charging energy would not affect the current-voltage characteristics of the superinsulating film significantly. However, it is theorized that a relapse to an insulating state with thermally activated resistance is possible, due to radiation-induced disruption of the fine-tuned granular structure. The breaking of Cooper pairs caused by incident and displaced ions may also destroy the conditions for a superinsulating phase to exist. Finally, even the energy loss to phonons can influence the superinsulating state, by increasing the effective temperature of the phonon thermostat, thereby reestablishing means for an energy exchange that can support Cooper pair tunneling.


Author(s):  
K. Loganovsky ◽  
◽  
P. Fedirko ◽  
K. Kuts ◽  
D. Marazziti ◽  
...  

Background.Exposure to ionizing radiation could affect the brain and eyes leading to cognitive and vision impairment, behavior disorders and performance decrement during professional irradiation at medical radiology, including interventional radiological procedures, long-term space flights, and radiation accidents. Objective. The objective was to analyze the current experimental, epidemiological, and clinical data on the radiation cerebro-ophthalmic effects. Materials and methods. In our analytical review peer-reviewed publications via the bibliographic and scientometric bases PubMed / MEDLINE, Scopus, Web of Science, and selected papers from the library catalog of NRCRM – the leading institution in the field of studying the medical effects of ionizing radiation – were used. Results. The probable radiation-induced cerebro-ophthalmic effects in human adults comprise radiation cataracts, radiation glaucoma, radiation-induced optic neuropathy, retinopathies, angiopathies as well as specific neurocognitive deficit in the various neuropsychiatric pathology including cerebrovascular pathology and neurodegenerative diseases. Specific attention is paid to the likely stochastic nature of many of those effects. Those prenatally and in childhood exposed are a particular target group with a higher risk for possible radiation effects and neurodegenerative diseases. Conclusions. The experimental, clinical, epidemiological, anatomical and pathophysiological rationale for visual system and central nervous system (CNS) radiosensitivity is given. The necessity for further international studies with adequate dosimetric support and the follow-up medical and biophysical monitoring of high radiation risk cohorts is justified. The first part of the study currently being published presents the results of the study of the effects of irradiation in the participants of emergency works at the Chornobyl Nuclear Power Plant (ChNPP). Key words: ionizing radiation, cerebroophthalmic effects, neurocognitive deficit, radiation accident, radiation cataracts, macular degeneration.


2008 ◽  
Vol 43 (5) ◽  
Author(s):  
J.-M. Bertho ◽  
L. Roy ◽  
M. Souidi ◽  
Y. Gueguen ◽  
J.-J. Lataillade ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Naila Naz ◽  
Shakil Ahmad ◽  
Silke Cameron ◽  
Federico Moriconi ◽  
Margret Rave-Fränk ◽  
...  

The current study aimed to investigate radiation-induced regulation of iron proteins including ferritin subunits in rats. Rat livers were selectively irradiatedin vivoat 25 Gy. This dose can be used to model radiation effects to the liver without inducing overt radiation-induced liver disease. Sham-irradiated rats served as controls. Isolated hepatocytes were irradiated at 8 Gy. Ferritin light polypeptide (FTL) was detectable in the serum of sham-irradiated rats with an increase after irradiation. Liver irradiation increased hepatic protein expression of both ferritin subunits. A rather early increase (3 h) was observed for hepatic TfR1 and Fpn-1 followed by a decrease at 12 h. The increase in TfR2 persisted over the observed time. Parallel to the elevation of AST levels, a significant increase (24 h) in hepatic iron content was measured. Complete blood count analysis showed a significant decrease in leukocyte number with an early increase in neutrophil granulocytes and a decrease in lymphocytes.In vitro, a significant increase in ferritin subunits at mRNA level was detected after irradiation which was further induced with a combination treatment of irradiation and acute phase cytokine. Irradiation can directly alter the expression of ferritin subunits and this response can be strongly influenced by radiation-induced proinflammatory cytokines. FTL can be used as a serum marker for early phase radiation-induced liver damage.


2017 ◽  
Vol 103 (5) ◽  
pp. 395-404 ◽  
Author(s):  
Tiziana Rancati ◽  
Federica Palorini ◽  
Cesare Cozzarini ◽  
Claudio Fiorino ◽  
Riccardo Valdagni

One of the most relevant achievements of Professor Gianni Bonadonna was the implementation of the methodology of controlled clinical trials in medical oncology. It is valid for all cancer types, oncological disciplines and clinical endpoints, both survival and toxicity. This narrative review reports on the status of the current knowledge of the radiation-induced urinary syndrome after external-beam radiotherapy for prostate cancer. In recent years, the syndrome has been the object of large-scale prospective observational trials specifically devoted to investigating the association of patient and treatment features with acute/late urinary toxicity. The first results of these trials allow initial attempts at predictive modeling, which can serve as a basis for the optimization of patient selection and treatment planning.


Sign in / Sign up

Export Citation Format

Share Document