scholarly journals Quaternary volcano-tectonic activity in the Soddo region, western margin of the Southern Main Ethiopian Rift

Tectonics ◽  
2013 ◽  
pp. n/a-n/a ◽  
Author(s):  
Giacomo Corti ◽  
Federico Sani ◽  
Melody Philippon ◽  
Dimitrios Sokoutis ◽  
Ernst Willingshofer ◽  
...  
2018 ◽  
Vol 728-729 ◽  
pp. 75-91 ◽  
Author(s):  
Giacomo Corti ◽  
Federico Sani ◽  
Samuele Agostini ◽  
Melody Philippon ◽  
Dimitrios Sokoutis ◽  
...  

2021 ◽  
Author(s):  
Amdemichael Zafu Tadesse ◽  
Karen Fontijn ◽  
Abate Assen Melaku ◽  
Ermias Filfilu Gebru ◽  
Victoria Smith ◽  
...  

<p>The Main Ethiopian Rift (MER) is the northern portion of the East African Rift System and separates the Eastern and Western plateaus of Ethiopia. The recent volcanic and tectonic activity is largely focused within the rift basin along a 20 km wide zone on the rift floor. Large silicic volcanic complexes are aligned along this central rift axis but their eruptive histories are not well constrained.</p><p>The Bora-Baricha-Tullu Moye (BBTM) volcanic field is situated in the central Main Ethiopian Rift and has a different appearance than the other MER volcanic systems. The BBTM constitutes several late Quaternary edifices, the major ones are: Tullu Moye, Bora and Baricha. In addition, there are multiple smaller eruptive vents (e.g. Oda and Dima), cones, and domes across the ca. 20 X 20 km wide area. Currently, there is very little information on the frequency and magnitude of past volcanic eruptions. We present a new dataset of field observations, componentry, petrography, geochronology (<sup>40</sup>Ar/<sup>39</sup>Ar), and glass major and trace element chemistry. The data are assessed as potential fingerprints to assign diagnostic features and correlate units across the area, and establish a tephrostratigraphic framework for the BBTM volcanic field.</p><p>Two large-volume and presumably caldera-forming eruptions are identified, the younger of which took place at 100 ka. The volcanic products exposed in the BBTM area show that the volcanic field has undergone at least 20 explosive eruptions since then. The post-caldera eruptions have comenditic (Tullu Moye) and pantelleretic (Bora and Baricha) magma compositions. Other smaller edifices such as Oda and Dima also erupted pantelleritic magmas, and only differ slightly in composition than tephra of Bora and Baricha. Tullu Moye had two distinct explosive eruptions that dispersed tephra up to 14 km away and on to the eastern plateau. Bora and Baricha together had at least 8 explosive eruptions. Their deposits can be distinguished by their light grey color and unique lithic components. Oda had 7 eruptions, the most recent of which generated a pyroclastic density current that travelled up to 10 km away from the vent. Dima experienced at least 3 eruptions, generating tephra with a bluish-grey colour.</p><p>This mapping and compositional analysis of the deposits from the BBTM in the MER indicates that the region has been more active in the last 100 ka than previously thought, which has implications for hazards assessments for the region.</p>


2021 ◽  
Author(s):  
Tesfay Kiros Mebrahtu ◽  
Thomas Heinze ◽  
Stefan Wohnlich

<p>Landslides and ground failures are among the common geo-environmental hazards in many of the tectonically active hilly and mountainous terrains of Ethiopia, such as in the western margin of the Main Ethiopian Rift in Debre Sina area. Besides the geological preconditioning, bi-modal monsoon and seismic events in the tectonically highly active region are usually suspected triggers. In order to minimize the damage caused by the slope failure events, a detailed investigation of landslide-prone areas using numerical modelling plays a crucial role. The aim of this study is to assess the stability of slopes, to understand the relevant failure mechanisms, and to evaluate and compare safety factors calculated by the different available numerical methods. The stability was assessed for slopes of complex geometry and heterogeneous material using the limit equilibrium method and the shear strength reduction method based on finite elements. Furthermore, numerical analysis was done under static and pseudo-static loading using the horizontal seismic coefficient to model their stability during a seismic event. The slope stability analysis indicates that the studied slopes are unstable, and any small scale disturbance will further reduce the factor of safety and probably causing failure. The critical strength reduction factors from the finite element method are significantly lower than the factor of safety from the limit equilibrium method in all studied scenarios, such as Bishop, Janbu Simplified, Spencer and Morgenstern-Price. The difference is especially evident for heterogeneous slopes with joints, which often are initiation points for the failure planes. The simulations show that slope stability of landslide prone hills in the study area strongly depends on the saturation conditions and the seismic load. The studied slopes are initially close to failure and increased pore-pressure or seismic load are very likely triggers.</p>


2006 ◽  
Vol 259 (1) ◽  
pp. 121-130 ◽  
Author(s):  
D. Ayalew ◽  
C. Ebinger ◽  
E. Bourdon ◽  
E. Wolfenden ◽  
G. Yirgu ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Martina Raggiunti ◽  
Derek Keir ◽  
Carolina Pagli

The Main Ethiopian Rift (MER) is characterized by extensional tectonics and volcanism, associated with active hydrothermal systems, hydrothermal alteration and fumarolic deposits. The spatial distribution of these hydrothermal products and their link with faults and rock types provides important clues to what controls fluid flow in the subsurface. However, little is known about this in the East African Rift. We address this issue with a multidisciplinary approach in the Fentale-Dofan magmatic segment of the MER, an area characterized by intense volcanic and tectonic activity and a geothermal prospect. Primarily we conduct mapping of hydrothermal alteration and fumarolic deposits, and rock lithologies using a surface feature classification technique of multispectral satellite images. Then we interpret the map using a new database of faults and active hydrothermal manifestations such as hot-springs and fumaroles. We find that the surface hydrothermal alteration and deposits are mainly focused near Fentale and the Dofan Volcanic Complex (DVC). At DVC the hydrothermal products are focused on rhyolites on the western side of the volcano, in an area of intense NNE striking, rift parallel faults. At Fentale volcano the hydrothermal products are mainly associated with ignimbrite and show a circular pattern around the volcanic edifice, but also in places follow the NNE striking faults. At Fentale, the more complex association of hydrothermal products and active manifestations around the edge of the ignimbrite suggests formation contacts may also localize fluid flow in places. At both volcanoes the association between hydrothermal products with either the rhyolites and ignimbrites is likely due to them being relatively easily altered (in comparison to basalt), and also their brittle nature allows for fracturing through which localized fluid flow can occur (as opposed to the sediments). The general pattern of hydrothermal products suggests a stronger structural influence at the DVC with respect to Fentale. The presence of hydrothermal products and active hydrothermal manifestations, along with other lines of evidence such as locus of subsurface dike intrusion at the volcanic centres, suggest that discrete and localized magma reservoirs beneath Fentale and the DVC are the heat source for hydrothermal circulation. Our study also demonstrates that geology, including hydrothermal deposits, can be successfully mapped using automated remote sensing based classification.


Sign in / Sign up

Export Citation Format

Share Document