scholarly journals P07.08: Role of image finding and biomarker in the granulosa cell ovarian sex cord‐stromal tumours

2019 ◽  
Vol 54 (S1) ◽  
pp. 176-176
Author(s):  
W. Huang ◽  
C. Liao ◽  
W. Liou
Keyword(s):  
2021 ◽  
Vol 22 (4) ◽  
pp. 2047
Author(s):  
Nina Schmid ◽  
Kim-Gwendolyn Dietrich ◽  
Ignasi Forne ◽  
Alexander Burges ◽  
Magdalena Szymanska ◽  
...  

Sirtuins (SIRTs) are NAD+-dependent deacetylases that regulate proliferation and cell death. In the human ovary, granulosa cells express sirtuin 1 (SIRT1), which has also been detected in human tumors derived from granulosa cells, i.e., granulosa cell tumors (GCTs), and in KGN cells. KGN cells are an established cellular model for the majority of GCTs and were used to explore the role of SIRT1. The SIRT1 activator SRT2104 increased cell proliferation. By contrast, the inhibitor EX527 reduced cell numbers, without inducing apoptosis. These results were supported by the outcome of siRNA-mediated silencing studies. A tissue microarray containing 92 GCTs revealed nuclear and/or cytoplasmic SIRT1 staining in the majority of the samples, and also, SIRT2-7 were detected in most samples. The expression of SIRT1–7 was not correlated with the survival of the patients; however, SIRT3 and SIRT7 expression was significantly correlated with the proliferation marker Ki-67, implying roles in tumor cell proliferation. SIRT3 was identified by a proteomic analysis as the most abundant SIRT in KGN. The results of the siRNA-silencing experiments indicate involvement of SIRT3 in proliferation. Thus, several SIRTs are expressed by GCTs, and SIRT1 and SIRT3 are involved in the growth regulation of KGN. If transferable to GCTs, these SIRTs may represent novel drug targets.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Christian Secchi ◽  
Paola Benaglio ◽  
Francesca Mulas ◽  
Martina Belli ◽  
Dwayne Stupack ◽  
...  

Abstract Background Adult granulosa cell tumor (aGCT) is a rare type of stromal cell malignant cancer of the ovary characterized by elevated estrogen levels. aGCTs ubiquitously harbor a somatic mutation in FOXL2 gene, Cys134Trp (c.402C < G); however, the general molecular effect of this mutation and its putative pathogenic role in aGCT tumorigenesis is not completely understood. We previously studied the role of FOXL2C134W, its partner SMAD3 and its antagonist FOXO1 in cellular models of aGCT. Methods In this work, seeking more comprehensive profiling of FOXL2C134W transcriptomic effects, we performed an RNA-seq analysis comparing the effect of FOXL2WT/SMAD3 and FOXL2C134W/SMAD3 overexpression in an established human GC line (HGrC1), which is not luteinized, and bears normal alleles of FOXL2. Results Our data shows that FOXL2C134W/SMAD3 overexpression alters the expression of 717 genes. These genes include known and novel FOXL2 targets (TGFB2, SMARCA4, HSPG2, MKI67, NFKBIA) and are enriched for neoplastic pathways (Proteoglycans in Cancer, Chromatin remodeling, Apoptosis, Tissue Morphogenesis, Tyrosine Kinase Receptors). We additionally expressed the FOXL2 antagonistic Forkhead protein, FOXO1. Surprisingly, overexpression of FOXO1 mitigated 40% of the altered genome-wide effects specifically related to FOXL2C134W, suggesting it can be a new target for aGCT treatment. Conclusions Our transcriptomic data provide novel insights into potential genes (FOXO1 regulated) that could be used as biomarkers of efficacy in aGCT patients.


Reproduction ◽  
2010 ◽  
Vol 140 (2) ◽  
pp. 295-303 ◽  
Author(s):  
Jennifer L Juengel ◽  
Lisa J Haydon ◽  
Brigitta Mester ◽  
Brian P Thomson ◽  
Michael Beaumont ◽  
...  

IGFs are known to be key regulators of ovarian follicular growth in eutherian mammals, but little is known regarding their role in marsupials. To better understand the potential role of IGFs in the regulation of follicular growth in marsupials, expression of mRNAs encoding IGF1, IGF2, IGF1R, IGF-binding protein 2 (IGFBP2), IGFBP4 and IGFBP5 was localized by in situ hybridization in developing ovarian follicles of the brushtail possum. In addition, the effects of IGF1 and IGF2 on granulosa cell function were tested in vitro. Both granulosa and theca cells synthesize IGF mRNAs, with the theca expressing IGF1 mRNA and granulosa cell expressing IGF2 mRNA. Oocytes and granulosa cells express IGF1R. Granulosa and theca cells expressed IGFBP mRNAs, although the pattern of expression differed between the BPs. IGFBP5 mRNA was differentially expressed as the follicles developed with granulosa cells of antral follicles no longer expressing IGFBP5 mRNA, suggesting an increased IGF bioavailability in the antral follicle. The IGFBP protease, PAPPA mRNA, was also expressed in granulosa cells of growing follicles. Both IGF1 and IGF2 stimulated thymidine incorporation but had no effect on progesterone production. Thus, IGF may be an important regulator of ovarian follicular development in marsupials as has been shown in eutherian mammals.


Reproduction ◽  
2013 ◽  
Vol 146 (1) ◽  
pp. 1-11 ◽  
Author(s):  
Yang Gao ◽  
Haixia Wen ◽  
Chao Wang ◽  
Qinglei Li

Transforming growth factor β (TGFβ) superfamily signaling is essential for female reproduction. Dysregulation of the TGFβ signaling pathway can cause reproductive diseases. SMA and MAD (mothers against decapentaplegic) (SMAD) proteins are downstream signaling transducers of the TGFβ superfamily. SMAD7 is an inhibitory SMAD that regulates TGFβ signalingin vitro. However, the function of SMAD7 in the ovary remains poorly defined. To determine the signaling preference and potential role of SMAD7 in the ovary, we herein examined the expression, regulation, and function of SMAD7 in mouse granulosa cells. We showed that SMAD7 was expressed in granulosa cells and subject to regulation by intraovarian growth factors from the TGFβ superfamily. TGFB1 (TGFβ1), bone morphogenetic protein 4, and oocyte-derived growth differentiation factor 9 (GDF9) were capable of inducingSmad7expression, suggesting a modulatory role of SMAD7 in a negative feedback loop. Using a small interfering RNA approach, we further demonstrated that SMAD7 was a negative regulator of TGFB1. Moreover, we revealed a link between SMAD7 and GDF9-mediated oocyte paracrine signaling, an essential component of oocyte–granulosa cell communication and folliculogenesis. Collectively, our results suggest that SMAD7 may function during follicular development via preferentially antagonizing and/or fine-tuning essential TGFβ superfamily signaling, which is involved in the regulation of oocyte–somatic cell interaction and granulosa cell function.


2011 ◽  
Vol 79 (3) ◽  
pp. 770-774 ◽  
Author(s):  
Jan Hauspy ◽  
Mario E. Beiner ◽  
Ian Harley ◽  
Barry Rosen ◽  
Joan Murphy ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document