Internalizing the vegetal cell mass before and during amphibian gastrulation: vegetal rotation and related movements

2011 ◽  
Vol 1 (2) ◽  
pp. 301-306 ◽  
Author(s):  
Rudolf Winklbauer ◽  
Erich W. Damm
Keyword(s):  
Development ◽  
1999 ◽  
Vol 126 (16) ◽  
pp. 3703-3713 ◽  
Author(s):  
R. Winklbauer ◽  
M. Schurfeld

A main achievement of gastrulation is the movement of the endoderm and mesoderm from the surface of the embryo to the interior. Despite its fundamental importance, this internalization process is not well understood in amphibians. We show that in Xenopus, an active distortion of the vegetal cell mass, vegetal rotation, leads to a dramatic expansion of the blastocoel floor and a concomitant turning around of the marginal zone which constitutes the first and major step of mesoderm involution. This vigorous inward surging of the vegetal region into the blastocoel can be analyzed in explanted slices of the gastrula, and is apparently driven by cell rearrangement. Thus, the prospective endoderm, previously thought to be moved passively, provides the main driving force for the internalization of the mesendoderm during the first half of gastrulation. For further involution, and for normal positioning of the involuted mesoderm and its rapid advance toward the animal pole, fibronectin-independent interaction with the blastocoel roof is required.


Author(s):  
Marc Lenburg ◽  
Rulang Jiang ◽  
Lengya Cheng ◽  
Laura Grabel

We are interested in defining the cell-cell and cell-matrix interactions that help direct the differentiation of extraembryonic endoderm in the peri-implantation mouse embryo. At the blastocyst stage the mouse embryo consists of an outer layer of trophectoderm surrounding the fluid-filled blastocoel cavity and an eccentrically located inner cell mass. On the free surface of the inner cell mass, facing the blastocoel cavity, a layer of primitive endoderm forms. Primitive endoderm then generates two distinct cell types; parietal endoderm (PE) which migrates along the inner surface of the trophectoderm and secretes large amounts of basement membrane components as well as tissue-type plasminogen activator (tPA), and visceral endoderm (VE), a columnar epithelial layer characterized by tight junctions, microvilli, and the synthesis and secretion of α-fetoprotein. As these events occur after implantation, we have turned to the F9 teratocarcinoma system as an in vitro model for examining the differentiation of these cell types. When F9 cells are treated in monolayer with retinoic acid plus cyclic-AMP, they differentiate into PE. In contrast, when F9 cells are treated in suspension with retinoic acid, they form embryoid bodies (EBs) which consist of an outer layer of VE and an inner core of undifferentiated stem cells. In addition, we have established that when VE containing embryoid bodies are plated on a fibronectin coated substrate, PE migrates onto the matrix and this interaction is inhibited by RGDS as well as antibodies directed against the β1 integrin subunit. This transition is accompanied by a significant increase in the level of tPA in the PE cells. Thus, the outgrowth system provides a spatially appropriate model for studying the differentiation and migration of PE from a VE precursor.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 2124-P
Author(s):  
KEITA HAMAMATSU ◽  
HIROYUKI FUJIMOTO ◽  
NAOTAKA FUJITA ◽  
TAKAAKI MURAKAMI ◽  
MASAHARU SHIOTANI ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 2145-P
Author(s):  
ELIZABETH SANCHEZ RANGEL ◽  
JASON BINI ◽  
NABEEL B. NABULSI ◽  
YIYUN HUANG ◽  
KEVAN C. HEROLD ◽  
...  

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 366-OR
Author(s):  
GRACE H. YANG ◽  
JEE YOUNG HAN ◽  
SUKANYA LODH ◽  
JOSEPH T. BLUMER ◽  
DANIELLE FONTAINE ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 2295-PUB
Author(s):  
TERESA MEZZA ◽  
PIETRO MANUEL FERRARO ◽  
GIANFRANCO DI GIUSEPPE ◽  
CHIARA MARIA ASSUNTA CEFALO ◽  
SIMONA MOFFA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document