Thyroid Hormone Rapidly Induces Hepatic LDL Receptor mRNA Levels in Hypophysectomized Rats

1994 ◽  
Vol 315 (1) ◽  
pp. 199-202 ◽  
Author(s):  
G.C. Ness ◽  
Z.H. Zhao
1994 ◽  
Vol 143 (1) ◽  
pp. 107-120 ◽  
Author(s):  
H Wallace ◽  
K McLaren ◽  
R Al-Shawi ◽  
J O Bishop

Abstract The herpes simplex type 1 virus thymidine kinase (HSV1-TK) reporter gene was coupled to a bovine thyroglobulin promoter (TG-tk construct). Within the thyroid glands of transgenic mice expression was confined to thyroid follicle cells. Infusion of Ganciclovir (9-[(1,3-dihydroxy-2-propoxy)methyl]guanine) to 8 to 12 week transgenic females led to the complete loss of thyroid HSV1-TK activity (at 3 to 4 days) and thyroid follicles (between 7 and 14 days). During the first 5 days of treatment a single reciprocal oscillation in circulating thyroxine (T4) and TSH levels occurred. By 14 days the circulating triiodothyronine (T3) and T4 levels of all treated animals were below the detection limits of the assays, while TSH levels were elevated ten-fold and continued to increase thereafter. During 14 days of treatment the thyroids regressed, protein content fell by 80–90% and the C cells, normally dispersed within the central region of each gland, came together in aggregates. Pituitary GH levels in females rose and fell back to normal within 14 days and between 14 and 28 days fell to a level comparable with that of GH-deficient lit/lit mice. The levels of hepatic GH receptor mRNA and the predominant 6·6 kb T3 receptor mRNA were unaffected by thyrocyte ablation. Thyrocyte ablation had no effect on the level of prolactin (Prl) receptor mRNA in females, but increased Prl receptor mRNA levels in males and eliminated group 1 major urinary protein (MUP) mRNA in females. T4 replacement reversed the effects of thyrocyte ablation on MUP mRNA in females and on Prl receptor mRNA in males. Despite the many physiological changes induced by thyrocyte ablation, ablated mice have been maintained for up to 1 year without thyroid hormone supplementation. T4-deficient females were normally fertile and carried pups to term. Although transgenic males expressed HSV1-TK ectopically in spermatids and spermatozoa at levels similar to thyrocyte levels, a rate of Ganciclovir infusion which successfully ablated the thyrocytes did not affect the testis. As an alternative to infusion by minipump, thyrocyte ablation could be achieved by 6 twice-daily injections of Ganciclovir, at a level of 112 μg Ganciclovir/g body weight per day, and fetuses in utero could be thyrocyte ablated by administering 50 or 15 μg/g body weight per day to pregnant females between days 14 and 18 of gestation. These data demonstrate the potential value of transgenic thyrocyte ablation in the study of the effects of thyroid hormone deprivation. Journal of Endocrinology (1994) 143, 107–120


2009 ◽  
Vol 34 (2) ◽  
pp. 281-286 ◽  
Author(s):  
Edward J. Stein ◽  
Nylson G. da Silveira Filho ◽  
Danilo C. Machado ◽  
Débora C. Hipólide ◽  
Karen Barlow ◽  
...  

2005 ◽  
Vol 94 (6) ◽  
pp. 902-908 ◽  
Author(s):  
Kyu-Ho Han ◽  
Miharu Iijuka ◽  
Ken-ichiro Shimada ◽  
Mitsuo Sekikawa ◽  
Katsuhisa Kuramochi ◽  
...  

We examined the effects of adzuki bean resistant starch on serum cholesterol and hepatic mRNA in rats fed a cholesterol diet. The mRNA coded for key regulatory proteins of cholesterol metabolism. The control rats were fed 15 % cornstarch (basal diet, BD). The experimental rats were fed BD plus a 0·5 % cholesterol diet (CD), or a 15 % adzuki resistant starch plus 0·5 % cholesterol diet (ACD) for 4 weeks. The serum total cholesterol and VLDL + intermediate density lipoprotein + LDL-cholesterol levels in the ACD group were significantly lower than those in the CD group throughout the feeding period. The total hepatic cholesterol concentrations in the CD and ACD groups were not significantly different. The faecal total bile acid concentration in the ACD group was significantly higher than that in the BD and CD groups. Total SCFA and acetic acid concentrations in the ACD group were significantly higher than those in the CD group but there were no significant differences in the concentrations between the ACD and BD groups. The hepatic LDL-receptor mRNA and cholesterol 7α-hydroxylase mRNA levels in the ACD group were significantly higher than those in the CD group and the hepatic 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase mRNA level in the ACD group was significantly lower than in the CD group. The results suggest that adzuki resistant starch has a serum cholesterol-lowering function via enhancement of the hepatic LDL-receptor mRNA and cholesterol 7α-hydroxylase mRNA levels and faecal bile acid excretion, and a decrease in the hepatic HMG-CoA reductase mRNA level, when it is added to a cholesterol diet.


1996 ◽  
Vol 313 (3) ◽  
pp. 873-878 ◽  
Author(s):  
Wei LIAO ◽  
Mats RUDLING ◽  
Bo ANGELIN

Endotoxin induces hyperlipidaemia in experimental animals. In the current study, we investigated whether endotoxin alters hepatic low-density lipoprotein (LDL) receptor expression in rats. Endotoxin treatment suppressed hepatic LDL receptor expression in a dose- and time-dependent manner. Eighteen hours after intraperitoneal injection of increasing amounts of endotoxin, LDL receptor and its mRNA levels were determined by ligand blot and solution hybridization respectively. LDL receptor expression was inhibited by about 70% at a dose of 500 μg/100 g body weight. However, LDL receptor mRNA levels were markedly increased in all endotoxin-treated groups at this time point (by 83–136%; P < 0.001). Time-course experiments showed that LDL receptor expression was already reduced by 48% 4 h after endotoxin injection and was maximally reduced (by 63–65%) between 8 and 18 h. Changes in hepatic LDL receptor mRNA showed a different pattern. By 4 h after endotoxin injection, LDL receptor mRNA had decreased by 78% (P < 0.001). However, by 8 h after endotoxin injection, LDL receptor mRNA had returned to levels similar to controls, and 18 and 24 h after endotoxin injection, they were increased by about 60% (P < 0.05). Separation of plasma lipoproteins by FPLC demonstrated that endotoxin-induced changes in plasma triacylglycerols and cholesterol were due to accumulation of plasma apolipoprotein B-containing lipoproteins among very-low-density lipoprotein, intermediate-density lipoprotein and LDL. It is concluded that endotoxin suppresses hepatic LDL receptor expression in vivo in rats.


2004 ◽  
Vol 91 (3) ◽  
pp. 341-349 ◽  
Author(s):  
Pujitha P. de Silva ◽  
Phillip J. Davis ◽  
Sukhinder Kaur Cheema

We investigated the dietary influence of low and high levels of fish oil, supplemented with or without dietary cholesterol, on the plasma lipoprotein profile in Bio F1B hamsters, a model susceptible to diet-induced hyperlipidaemia. The MIX diet, a diet supplemented with a mixture of lard and safflower-seed oil, was used as the control diet to maintain the saturated MUFA and PUFA levels similar to the fish-oil diet. The animals were fed the specific diets for 2 weeks and fasted for 14h before killing. The plasma from the animals fed high levels of fish oil was milky and rich in chylomicron-like particles. The plasma total cholesterol, VLDL- and LDL-cholesterol and -triacylglycerol concentrations were significantly higher, whereas HDL-cholesterol was lower in hamsters fed fish oil compared with the MIX-diet-fed hamsters. Increasing the amount of fat in the diet increased plasma lipids in both the fish-oil- and the MIX-diet-fed hamsters; however, this hyperlipidaemic effect of dietary fat level was greater in the hamsters fed the fish-oil diet. The hepatic lipid concentrations were not dramatically different between the fish-oil-fed and the MIX-diet-fed hamsters. However, the hepatic LDL-receptor mRNA levels were significantly low in the fish-oil-fed hamsters compared with the MIX-diet-fed hamsters. Increasing the amount of fish oil in the diet further decreased the hepatic LDL-receptor mRNA expression. It is concluded that F1B hamsters are susceptible to fish-oil-induced hyperlipidaemia, especially at high fat levels, and this increase is partially explained by the inhibition of hepatic LDL-receptor mRNA expression.


Sign in / Sign up

Export Citation Format

Share Document