scholarly journals Dry Weight and N Partitioning in Relation to Substrate N Supply, Internal N Status and Developmental Stage in Jack Pine (Pinus banksianaLamb.) Seedlings: Implications for Modelling

1998 ◽  
Vol 81 (2) ◽  
pp. 195-201 ◽  
Author(s):  
W TAN
1985 ◽  
Vol 15 (5) ◽  
pp. 855-861 ◽  
Author(s):  
G. Prégent ◽  
C. Camiré

Invitro cultures of Alnuscrispa (Ait.) Pursh and Alnusglutinosa (L.) Gaertn. were used to estimate critical foliage levels of selected nutrients for optimal growth and dinitrogen (N2) fixation. For A. crispa to obtain 90% of maximum growth and N2 fixation, foliar levels of 0.12% P, 0.13% Mg, <0.31% K, and <0.04% Ca on a dry weight basis were needed. For A. glutinosa, the critical levels were 0.138% P, 0.10% Mg, 0.29% Ca, and ~0.20% K. From all the deficiencies observed, P had the more pronounced effects on N status of both species.


1983 ◽  
Vol 13 (6) ◽  
pp. 1030-1036 ◽  
Author(s):  
G. F. Weetman ◽  
D. Algar

An old, merchantable, low-site class black spruce (Piceamariana (Mill.) B.S.P.) stand growing on a Lithic Humo-Ferric Podzol overlying a granite bedrock, and a younger but merchantable low-site class jack pine (Pinusbanksiana Lamb.) stand growing on a Ferro-Humic Podzol overlying a deep coarse sand near Baie Comeau, P.Q., were analysed for stand biomass and macronutrient contents of both stand and soil. The magnitude of the depletions of macronutrients from the site, in full-tree and tree-length methods of logging, are compared with their available and total quantities in the soil. The range of values from the literature for nutrient inputs are presented and discussed in relation to logging losses. The results suggest that full-tree logging in the dry jack pine stand could cause a severe loss of potentially mineralizable N supply; P, K, and Mg deficiency problems owing to export are not apparent, but a Ca balance problem is apparent. The implication is that full-tree logging should be avoided on such sites.


1996 ◽  
Vol 26 (4) ◽  
pp. 649-657 ◽  
Author(s):  
M.S. Günthardt-Goerg ◽  
P. Schmutz ◽  
R. Matyssek ◽  
J.B. Bucher

Although increasing tropospheric ozone (O3) concentrations as well as precursor NO2 emissions and N deposition have been observed, the combination of their effects on deciduous trees is little understood. We therefore examined the growth and leaf injury response of a model tree (Populus ×euramericana (Dode) Guinier cuttings exposed before flush and until they reached a height of more than 1 m) to low and high soil N supply (105 or 315 mg N•L−1 substrate volume), to filtered air, and to filtered air with NO2 (sinusoidal daily course with a mean of 100 nL•L−1), with O3 (60 nL•L−1), or with a combination of both in climate-controlled chambers. High soil N increased total plant dry weight, leaf area, and xylem radius in plants fumigated with or without added NO2 or O3. The number of leaves increased with high soil N independent of added NO2. The stomatal density was influenced by soil N and by fumigations, but the appearance of leaf injury symptoms, leaf loss, specific leaf weight, and bark radius were not modified by the soil N regimes. NO2 alone, though applied in a sixfold ambient concentration, did not significantly increase plant growth. NO2 and O3 alone had opposite effects on specific leaf dry weight, stomatal density, and in the high fertilization regime, on the bark radius. The decrease in specific leaf dry weight and the appearance of early leaf symptoms were enhanced by NO2 added to O3. Visible leaf injury caused by O3 increased in parallel with microscopic changes in mesophyll cell walls, in the starch and protein patterns of mesophyll cells, in the bark cell content, and in the phloem sieve pores. NO2 enhanced the negative effect of O3 rather than compensated for a low soil N supply.


1996 ◽  
Vol 121 (1) ◽  
pp. 115-122 ◽  
Author(s):  
K.I. Theron ◽  
G. Jacobs

Large Nerine bowdenii bulbs (>14 cm in circumference) were exposed to low ligbt intensities for different periods during two successive growing seasons. The flowering percentage and number of florets in the current season's inflorescence were recorded at anthesis. Small and large bulbs were subjected to continual defoliation starting at different times during the growing season. Bulbs were dissected at planting (26 Sept. 1992) and on 12 Jan. 1993 (nondefoliated control bulbs) to determine growth and developmental stage. At anthesis, inflorescences were harvested and the florets per inflorescence were counted. After anthesis in the fall, all bulbs were dissected and the following variables recorded: 1) percentage flowering, quiescence, or abortion of the current season's inflorescence; 2) developmental stage of quiescent inflorescences; 3) number of florets in the outermost inflorescence; 4) developmental stage of the innermost inflorescence; 5) number of leaves or leaf bases in each growth unit; 6) number of daughter bulbs; and 7) dry weight of new leaf bases. There were three reasons for nonflowering of the bulbs, viz., failure to initiate an inflorescence, inflorescences remaining quiescent, and inflorescence abortion. Individual florets that had not reached stage “Late G” (gynoecium elongated, carpels fused) at the start of rapid inflorescence elongation aborted. The more florets that aborted, the greater the probability that the entire inflorescence aborted. The inflorescence was more vulnerable to stress during the first half of the growing season due to its relatively weak position in the hierarchy of sinks within the bulb.


2017 ◽  
pp. 161-166
Author(s):  
D. Hamilton ◽  
C. Martin ◽  
M. Bennet ◽  
M. Hearnden ◽  
C.A. Asis

1987 ◽  
Vol 65 (7) ◽  
pp. 1427-1432 ◽  
Author(s):  
Gordon I. McIntyre

A previous investigation of apical dominance in the rhizome of Agropyron repens showed that keeping the rhizome in a high humidity promoted the outgrowth of the lateral buds but strongly inhibited the growth of the rhizome apex. A study of these related responses demonstrated that the inhibition of apical growth was not prevented by excision of the lateral buds and was also induced when only the apex of the rhizome received the high humidity treatment. The necrotic lesions that developed in the arrested apices and the reduction of apical inhibition produced by various Ca treatments indicated that the inhibition of apical growth was caused by Ca deficiency. When the rhizome apex was exposed to low humidity, a localized high-humidity treatment of the lateral buds did not release the buds from apical dominance in low-N rhizomes but strongly promoted bud growth at a higher N level. When growth of the buds was induced at low humidity by increasing the N supply, the increase in bud weight was preceded by an increase in the water content of the bud when expressed on a dry weight basis. These results agree with those of previous investigations and suggest that the interacting effects of N and humidity on the water status of the buds may play a significant role in the mechanism of apical dominance.


1994 ◽  
Vol 74 (3) ◽  
pp. 479-484 ◽  
Author(s):  
D. E. McCullough ◽  
A. Aguilera ◽  
M. Tollenaar

An old maize (Zea mays L.) hybrid (Pride 5) has been shown to be less tolerant to N stress than a new maize hybrid (Pioneer 3902) during early phases of development. The objective of this study was to quantify the response of the two hybids to N supply in terms of N uptake, N partitioning, and photosynthetic N–use efficiency. Plants were grown under controlled-environment conditions until the 12-leaf stage at three levels of N supply (i.e., 15 mM N, 2.5 mM N, and 0.5 mM N) and were sampled at the 4-, 8-, and 12-leaf stages. Rates of N uptake per unit ground area were higher for Pioneer 3902 than for Pride 5 under maximum N stress during the 8- to 12-leaf phase, but rates were higher for Pride 5 at high N. Rates of N uptake per unit root weight were higher for Pioneer 3902 than for Pride 5 under both medium and low N supply. The old hybrid (Pride 5) partitioned more dry matter and N to leaves than the new hybrid under low N supply, but leaf N per unit leaf area was higher for the new hybrid. The new hybrid (Pioneer 3902) maintained greater rates of leaf photosynthesis per unit leaf N regardless of N supply. Consequently, results indicate that the higher N-use efficiency of Pioneer 3902 under low N supply is associated with higher N uptake and a higher leaf N per unit leaf area. Key words:Zea mays L., dry matter accumulation, photosynthesis, leaf N


1995 ◽  
Vol 124 (1) ◽  
pp. 27-37 ◽  
Author(s):  
E. F. Foster ◽  
A. Pajarito ◽  
J. Acosta-Gallegos

SUMMARYField and glasshouse studies were conducted in Durango, Mexico in 1987 and in East Lansing, Michigan, USA in 1989, respectively, to determine the effects of moisture deficits upon N-use efficiency (NUE), N partitioning and remobilization, and N harvest index (NHI) in edible beans (Phaseolus vulgaris L.). Four indeterminate, semi-prostrate genotypes adapted to the semi-arid high plains of Mexico, Pinto Nacional-1, Durango 222, L1213–2 and Bayo Madero, were used in the field study and Pinto Nacional-1 and Bayo Madero were used in the glasshouse study. A Xerosol Haplic soil was used in the field study and a Spinks loamy sand in the glasshouse study. A moisture deficit was induced by use of temporary rainshelters in the field and curtailment of water in the glasshouse. Plants were sampled periodically and subdivided into leaves, stems, pods and flowers, and roots (in the glasshouse study only) for determination of dry weight and total N content. Water-use efficiency was determined in the glasshouse study. A moderate moisture deficit (drought intensity index 0·41) reduced yield by 41% in comparison with non-stressed yield (from 134·3 down to 79·2 g/m2) and resulted in a greater percentage of seed-N derived from N that had been redistributed from the leaf, indicating that N partitioning was not impaired by this degree of stress. In contrast, N remobilization was greatly reduced by a more severe moisture deficit (drought intensity index 0·92), which resulted in yield losses of 92% (from 2·19 down to 0·17 g/pot). These results suggest that N remobilization may be an important drought adaptation strategy under moderate or intermittent moisture deficits. Severe moisture deficits reduced NHI, harvest index (HI), NUE and water-use efficiency (WUE) when WUE was expressed as seed dry weight per litre water used. Genotypic variability was observed for NHI, HI and NUE.


HortScience ◽  
2003 ◽  
Vol 38 (4) ◽  
pp. 537-541 ◽  
Author(s):  
James E. Altland ◽  
Charles H. Gilliam ◽  
Gary J. Keever ◽  
James H. Edwards ◽  
Jeff L. Sibley ◽  
...  

Two experiments were conducted with pansy (Viola ×wittrockiana Gams `Bingo Yello') to determine the relationship between foliar nitrogen (% of dry weight) (FN) and either sap nitrate concentration (SN) in petioles or SPAD readings of foliage. FN was highly correlated to SN throughout both experiments (r = 0.80 to 0.91). FN was poorly correlated to SPAD readings early in both experiments (r = 0.54 to 0.65), but more highly correlated later when visual symptoms of N deficiency were apparent (r = 0.84 to 0.90). SN determined with the Cardy sap nitrate meter was a reliable predictor of FN in pansy, while SPAD readings were only reliable after symptoms of N deficiency were visually evident. FN can be predicted with SN using the following equation: log(SN) = 0.47*FN + 1.6 [r2 = 0.80, n = 132]. Growers and landscape professionals can use SN readings to predict FN levels in pansy, and thus rapidly and accurately diagnose the N status of their crop.


Sign in / Sign up

Export Citation Format

Share Document