Up-Regulation of Keratinocyte Growth Factor and Receptor: A Possible Mechanism of Action of Phenytoin in Wound Healing

2001 ◽  
Vol 282 (4) ◽  
pp. 875-881 ◽  
Author(s):  
Swarga Jyoti Das ◽  
Irwin Olsen
Author(s):  
Hao Pan ◽  
Changcan Shi ◽  
Rongshuai Yang ◽  
Guanghui Xi ◽  
Chao Lu ◽  
...  

Keratinocyte growth factor-2 (KGF-2) plays a remarkable role in maintaining normal tissue structure and promoting wound healing by regulation the proliferation and differentiation of keratinocyte. As an effective strategy, KGF-2...


2006 ◽  
Vol 6 ◽  
pp. 425-441 ◽  
Author(s):  
Noori S. Al-Waili ◽  
Glenn J. Butler

There is growing interest in expanding the clinical applications for HBO2(hyperbaric oxygen therapy) into new medical and surgical fields. The pathophysiology of response towards wounds, infection, trauma, or surgery involves various chemical mediators that include cytokines, prostaglandins (PGs), and nitric oxide (NO). The beneficial role played by HBO2in wound healing, carbon monoxide poisoning, decompression sickness, and other indications is well documented. However, the exact mechanism of action is still poorly understood. This review addresses the effects of HBO2on PGs, NO, and cytokines involved in wound pathophysiology and inflammation in particular. The results of this review indicate that HBO2has important effects on the biology of cytokines and other mediators of inflammation. HBO2causes cytokine down-regulation and growth factor up-regulation. HBO2transiently suppresses stimulus-induced proinflammatory cytokine production and affects the liberation of TNFα (tumor necrosis factor alpha) and endothelins. VEGF (vascular endothelial growth factor) levels are significantly increased with HBO2, whereas the value of PGE2 and COX-2 mRNA are markedly reduced. The effect of HBO2on NO production is not well established and more studies are required. In conclusion, cytokines, PGs, and NO may play a major role in the mechanism of action of HBO2 and further research could pave the way for new clinical applications for HBO2to be established. It could be proposed that chronic wounds persist due to an uncontrolled pathological inflammatory response in the wound bed and that HBO2enhances wound healing by damping pathological inflammation (anti-inflammatory effects); this hypothetical proposal remains to be substantiated with experimental results.


2002 ◽  
Vol 111 (10) ◽  
pp. 947-953 ◽  
Author(s):  
Shin-Ichi Ishimoto ◽  
Toshio Ishibashi

The participation of growth factors in wound healing of tympanic membranes (TMs) is established. To determine the possible role of these growth factors in normal healing, we examined the regulation of keratinocyte growth factor (KGF), transforming growth factor–α (TGF-α), and basic fibroblast growth factor (bFGF) messenger RNA (mRNA) expression in wounded TMs of glucocorticoid-treated rats; these rats have severe wound healing abnormalities. Induction of KGF, TGF-α, and bFGF mRNA expression after TM injury was significantly reduced in these rats. Moreover, we found that the average number of bromodeoxyundine-positive cells in a glucocorticoid-treated group was significantly lower than that in controls. The data suggest that reduced expression of these genes might be partially responsible for the wound healing defects seen in these animals. These results provide a possible explanation for the beneficial effect of exogenous KGF, TGF-α, or bFGF in treatment of wound healing disorders of the TM.


2019 ◽  
Vol 20 (3) ◽  
pp. 651 ◽  
Author(s):  
Sang Park ◽  
Dong Kim ◽  
Sunggyu Kim ◽  
Laura Lorz ◽  
Eunju Choi ◽  
...  

Loliolide is a monoterpenoid hydroxylactone present in freshwater algae that has anti-inflammatory and antiaging activity; however, its effects on ultraviolet-damaged skin have yet to be elucidated. This study investigated the antiapoptosis and wound-healing effects of loliolide using HaCaT cells (a human keratinocyte cell line). Loliolide inhibited the expression of reactive oxygen species (ROS) induced by ultraviolet radiation as well as wrinkle formation-related matrix metalloproteinase genes and increased the expression of the damage repair-related gene SIRT1. The apoptosis signaling pathway was confirmed by Western blot analysis, which showed that loliolide was able to reduce the expression of caspases 3, 8, and 9, which are related to ROS-induced apoptosis. In addition, Western blotting, reverse-transcription polymerase chain reaction (PCR), and real-time PCR analyses showed that loliolide enhanced the expression of the epidermal growth factor receptor signaling pathway (PI3K, AKT) and migration factors, such as K6, K16, and K17; keratinocyte growth factor; and inflammatory cytokines, such as interleukin (IL)-1, IL-17, and IL-22 expressed during the cellular scratching process, suggesting a putative wound-healing ability. Because of the antiapoptosis and antiscratching effects on skin of both loliolide and loliolide-rich Prasiola japonica ethanol extract, we consider the former to be an important compound used in the cosmeceutical industry.


2018 ◽  
Vol 10 (2) ◽  
pp. 57 ◽  
Author(s):  
Nasrul Wathoni ◽  
Aliya Nur Hasanah ◽  
Ahmed Fouad Abdelwahab Mohammed ◽  
Elasari Dwi Pratiwi ◽  
Ripa’atul Mahmudah

Objective: The main objective of the research work was to fabricate sacran hydrogel film containing keratinocyte growth factor (Sacran/KGF-HGF), and to evaluate their wound healing ability in alloxan-induced diabetic mice model.Methods: The physicochemical characterization of Sacran/KGF-HGF were investigated by thickness, tensile strength, swelling ratio, x-ray diffractometer (XRD), scanning electron microscope (SEM), and biodegradability. The wound healing ability was investigated by creating two full-thickness excisional wounds inalloxan-induced diabetic mice.Results: The thickness, tensile strength, and swelling ratio results showed that KGF in the Sacran/KGF-HGF improved not only the thickness of sacran hydrogel film (Sacran-HGF), but also the tensile strength and swelling ability of Sacran-HGF. The XRD and SEM results confirmed that the Sacran/KGF-HGF were amorphous and similar morphology to Sacran-HGF, respectively. The biodegradability results revealed that the Sacran/KGF-HGF degraded for about 41.29% in trichloroacetic acid (TCA) and 22.92% in TrypLE™ (recombinant enzyme) solutions. In addition, KGF improved the degradability of Sacran/KGF-HGF in both solutions. Interestingly, the Sacran/KGF-HGF, which was applied on wound site, considerably improved the wound healing ability of Sacran-HGF at 6, 9 and 12 d in alloxan-induced diabetic mice model, compared to control (non-treated).Conclusion: These results suggest that KGF has the potential to promote the chronic wound healing ability of Sacran-HGF.


1999 ◽  
Vol 7 (3) ◽  
pp. 172-178 ◽  
Author(s):  
Pedro M Soler ◽  
Terry E Wright ◽  
Paul D Smith ◽  
Sergio P Maggi ◽  
Donald P Hill ◽  
...  

2013 ◽  
Vol 37 (5) ◽  
pp. 1023-1033 ◽  
Author(s):  
Xinhua Wang ◽  
Mengfei Yu ◽  
Wenyuan Zhu ◽  
Tingwei Bao ◽  
Liqin Zhu ◽  
...  

2010 ◽  
Vol 43 (3) ◽  
pp. 89-98 ◽  
Author(s):  
Takafumi Abo ◽  
Takeshi Nagayasu ◽  
Yoshitaka Hishikawa ◽  
Tsutomu Tagawa ◽  
Atsushi Nanashima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document