Membrane Tumor Necrosis Factor-α (TNF-α) Expressed on HTLV-I-Infected T Cells Mediates a Costimulatory Signal for B Cell Activation—Characterization of Membrane TNF-α

1997 ◽  
Vol 82 (2) ◽  
pp. 133-140 ◽  
Author(s):  
Masanori Higuchi ◽  
Kohei Nagasawa ◽  
Takahiko Horiuchi ◽  
Masahiro Oike ◽  
Yushi Ito ◽  
...  
Blood ◽  
2001 ◽  
Vol 97 (8) ◽  
pp. 2381-2389 ◽  
Author(s):  
Nevila Hyka ◽  
Jean-Michel Dayer ◽  
Christine Modoux ◽  
Tadahiko Kohno ◽  
Carl K. Edwards ◽  
...  

Abstract Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β), essential components in the pathogenesis of immunoinflammatory diseases, are strongly induced in monocytes by direct contact with stimulated T lymphocytes. This study demonstrates that adult human serum (HS) but not fetal calf or cord blood serum displays inhibitory activity toward the contact-mediated activation of monocytes by stimulated T cells, decreasing the production of both TNF-α and IL-1β. Fractionation of HS and N-terminal microsequencing as well as electroelution of material subjected to preparative electrophoresis revealed that apolipoprotein A-I (apo A-I), a “negative” acute-phase protein, was the inhibitory factor. Functional assays and flow cytometry analyses show that high-density lipoprotein (HDL)-associated apo A-I inhibits contact-mediated activation of monocytes by binding to stimulated T cells, thus inhibiting TNF-α and IL-1β production at both protein and messenger RNA levels. Furthermore, apo A-I inhibits monocyte inflammatory functions in peripheral blood mononuclear cells activated by either specific antigens or lectins without affecting cell proliferation. These results demonstrate a new anti-inflammatory activity of HDL-associated apo A-I that might have modulating functions in nonseptic conditions. Therefore, because HDL has been shown to bind and neutralize lipopolysaccharide, HDL appears to play an important part in modulating both acute and chronic inflammation. The novel anti-inflammatory function of apo A-I reported here might lead to new therapeutic approaches in inflammatory diseases such as rheumatoid arthritis, multiple sclerosis, systemic lupus erythematosus, and atherosclerosis.


Blood ◽  
1997 ◽  
Vol 90 (4) ◽  
pp. 1588-1593 ◽  
Author(s):  
Seetha M. Lakshmi Tamma ◽  
Narendra Chirmule ◽  
Hirosuka Yagura ◽  
Naoki Oyaizu ◽  
Vaniambadi Kalyanaraman ◽  
...  

Abstract CD4 molecules are the primary receptors for human immunodeficiency virus (HIV) and bind the envelope glycoprotein gp120 of HIV with high-affinity. We have previously shown that cross-linking of CD4 molecules (CD4XL) in normal peripheral blood mononuclear cells (PBMC) results in secretion of cytokines tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), but not of interleukin-2 (IL-2) or IL-4. To investigate the intracellular signaling events associated with CD4-gp120 interaction, we incubated CD4+ T cells from peripheral blood of HIV-negative healthy donors with HIV envelope protein gp160 alone or performed CD4XL with gp160 and anti-gp160 antibody. This procedure resulted in tyrosine phosphorylation of intracellular substrates p59fyn, zap 70, and p95vav and also led to ras activation, as assessed by conversion of rasGDP to rasGTP. The role of ras in CD4 signaling was further investigated using CD4+ Jurkat cells transfected with a dominant negative ras mutant. CD4+ T cells expressing dn-ras secreted significantly reduced levels of TNF-α in response to CD4XL. These studies indicate that interaction of HIV gp160 with CD4 molecules activates the ras pathway in T cells, which may result in the cells becoming unresponsive to subsequent stimulation.


1989 ◽  
Vol 123 (2) ◽  
pp. 233-240 ◽  
Author(s):  
Ulf Andersson ◽  
Günther Adolf ◽  
Mikael Dohlsten ◽  
Göran Möller ◽  
Hans-Olov Sjögren

Blood ◽  
1997 ◽  
Vol 90 (4) ◽  
pp. 1588-1593 ◽  
Author(s):  
Seetha M. Lakshmi Tamma ◽  
Narendra Chirmule ◽  
Hirosuka Yagura ◽  
Naoki Oyaizu ◽  
Vaniambadi Kalyanaraman ◽  
...  

CD4 molecules are the primary receptors for human immunodeficiency virus (HIV) and bind the envelope glycoprotein gp120 of HIV with high-affinity. We have previously shown that cross-linking of CD4 molecules (CD4XL) in normal peripheral blood mononuclear cells (PBMC) results in secretion of cytokines tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), but not of interleukin-2 (IL-2) or IL-4. To investigate the intracellular signaling events associated with CD4-gp120 interaction, we incubated CD4+ T cells from peripheral blood of HIV-negative healthy donors with HIV envelope protein gp160 alone or performed CD4XL with gp160 and anti-gp160 antibody. This procedure resulted in tyrosine phosphorylation of intracellular substrates p59fyn, zap 70, and p95vav and also led to ras activation, as assessed by conversion of rasGDP to rasGTP. The role of ras in CD4 signaling was further investigated using CD4+ Jurkat cells transfected with a dominant negative ras mutant. CD4+ T cells expressing dn-ras secreted significantly reduced levels of TNF-α in response to CD4XL. These studies indicate that interaction of HIV gp160 with CD4 molecules activates the ras pathway in T cells, which may result in the cells becoming unresponsive to subsequent stimulation.


2019 ◽  
Vol 88 ◽  
pp. 149-150 ◽  
Author(s):  
Erkoseoglu Ilknur ◽  
Kadioglu Mine ◽  
Cavusoglu Irem ◽  
Sisman Mulkiye ◽  
Aran Turhan ◽  
...  

2017 ◽  
Vol 9 ◽  
pp. 117957351770927 ◽  
Author(s):  
Rudy Chang ◽  
Kei-Lwun Yee ◽  
Rachita K Sumbria

Tumor necrosis factor α (TNF-α) plays a central role in the pathophysiology of Alzheimer’s disease (AD). Food and Drug Administration–approved biologic TNF-α inhibitors are thus a potential treatment for AD, but they do not cross the blood-brain barrier. In this short review, we discuss the involvement of TNF-α in AD, challenges associated with the development of existing biologic TNF-α inhibitors for AD, and potential therapeutic strategies for targeting TNF-α for AD therapy.


2002 ◽  
Vol 283 (4) ◽  
pp. G947-G956 ◽  
Author(s):  
Nathan W. Werneburg ◽  
M. Eugenia Guicciardi ◽  
Steven F. Bronk ◽  
Gregory J. Gores

Cathepsin B (Cat B) is released from lysososomes during tumor necrosis factor-α (TNF-α) cytotoxic signaling in hepatocytes and contributes to cell death. Sphingosine has recently been implicated in lysosomal permeabilization and is increased in the liver by TNF-α. Thus the aims of this study were to examine the mechanisms involved in TNF-α-associated lysosomal permeabilization, especially the role of sphingosine. Confocal microscopy demonstrated Cat B-green fluorescent protein and LysoTracker Red were both released from lysosomes after treatment of McNtcp.24 cells with TNF-α/actinomycin D, a finding compatible with lysosomal destabilization. In contrast, endosomes labeled with Texas Red dextran remained intact, suggesting lysosomes were specifically targeted for permeabilization. LysoTracker Red was released from lysosomes in hepatocytes treated with TNF-α or sphingosine in Cat B(+/+) but not Cat B(−/−) hepatocytes, as assessed by a fluorescence-based assay. With the use of a calcein release assay in isolated lysosomes, sphingosine permeabilized liver lysosomes isolated from Cat B(+/+) but not Cat B(−/−) liver. C6ceramide did not permeabilize lysosomes. In conclusion, these data implicate a sphingosine-Cat B interaction inducing lysosomal destabilization during TNF-α cytotoxic signaling.


Sign in / Sign up

Export Citation Format

Share Document