MODULATION OF CELL SURFACE MARKERS ON NK-LIKE T LYMPHOCYTES BY USING IL-2, IL-7 OR IL-12 IN VITRO STIMULATION

Cytokine ◽  
2000 ◽  
Vol 12 (9) ◽  
pp. 1385-1390 ◽  
Author(s):  
B Zoll ◽  
P Lefterova ◽  
O Ebert ◽  
D Huhn ◽  
A von Ruecker ◽  
...  
2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Alvaro Plaza Reyes ◽  
Sandra Petrus-Reurer ◽  
Sara Padrell Sánchez ◽  
Pankaj Kumar ◽  
Iyadh Douagi ◽  
...  

AbstractIn vitro differentiation of human pluripotent stem cells into functional retinal pigment epithelial (RPE) cells provides a potentially unlimited source for cell based reparative therapy of age-related macular degeneration. Although the inherent pigmentation of the RPE cells have been useful to grossly evaluate differentiation efficiency and allowed manual isolation of pigmented structures, accurate quantification and automated isolation has been challenging. To address this issue, here we perform a comprehensive antibody screening and identify cell surface markers for RPE cells. We show that these markers can be used to isolate RPE cells during in vitro differentiation and to track, quantify and improve differentiation efficiency. Finally, these surface markers aided to develop a robust, direct and scalable monolayer differentiation protocol on human recombinant laminin-111 and −521 without the need for manual isolation.


Biomaterials ◽  
2011 ◽  
Vol 32 (30) ◽  
pp. 7375-7388 ◽  
Author(s):  
Philippe Kémoun ◽  
Stan Gronthos ◽  
Malcolm L. Snead ◽  
Jacqueline Rue ◽  
Bruno Courtois ◽  
...  

Author(s):  
Celeste Limoli ◽  
Paolo Giuseppe Limoli ◽  
Marcella Nebbioso

Background: Developing an efficient and standardized method to isolate and characterize adipose-derived stem cells (ASCs) from the stromal vascular fraction (SVF) of the adipose tissue for clinical application represents one of the major challenges in cell therapy and tissue engineering. Methods: In this study, we proposed an innovative, non-enzymatic protocol to collect clinically useful ASCs within freshly isolated SVF from adipose tissue by centrifugation of the infranatant portion of lipoaspirate and to determine the characteristic cytofluorimetric pattern, prior to in vitro culture. Results: The SVF yielded a mean of 73,32 \pm\ 10,89% cell viability evaluated with CALCEINA-FITC, i.e. cell-permeant dye. The ASCs were positive for PC7-labeled mAb anti-CD34 and negative for both PE-labeled mAb anti-CD31 and APC-labeled mAb anti-CD45. The frequency of ASCs estimated according to the panel of cell surface markers used was 51,06%\ \pm 5,26% versus the unstained ASCs subpopulation that was 0,74%\pm0,84% (P<0.0001). The ASCs events/\muL were 1602,13/\muL \pm 731,87/\muL. Conclusion: Our findings suggested that ASCs found in freshly isolated adipose SVF obtained by centrifugation of lipoaspirate can be immunophenotypically identified with a basic panel of cell surface markers. These findings aimed to provide standardization and contribute to reducing the inconsistency on reported cell surface antigens of ASC derived from the existing literature.


1988 ◽  
Vol 8 (12) ◽  
pp. 5358-5368
Author(s):  
C F Barth ◽  
E H Humphries

The infection of newly hatched chickens with reticuloendotheliosis virus strain T (REV-T) and a nonimmunosuppressive helper virus, chicken syncytial virus, induces rapidly metastatic B-cell lymphomas. In vivo analysis of these tumors with monoclonal antibodies detected the expression of the B-cell surface markers immunoglobulin M (IgM), CIa, Bu2, and CLA-1, but not IgG, Bu1, or a T-cell surface marker, CT-1. Cell lines derived from tumors exhibited the same pattern of staining, suggesting that expression of cell surface markers does not change during in vitro cell line development. All cell lines examined synthesized IgM in varying amounts. Northern (RNA blot) analysis confirmed abundant expression of v-rel mRNA, and Southern analysis revealed rearrangement of both heavy- and light-chain immunoglobulin loci. Analysis of the light-chain locus demonstrated that 20 of 22 lines contained a single rearranged allele. With respect to specific restriction enzyme sites within the V lambda 1 gene, the active allele in any given clone was either diversified or nondiversified. In contrast, examination of the heavy-chain loci within these lines demonstrated that 16 of the 22 had both alleles rearranged. Further diversification of the V lambda 1 locus did not occur after prolonged in vitro passage of the cell lines. We propose that v-rel expression arrests diversification of the light-chain locus in these lymphoid cells, allowing the production of stable, clonal B-cell populations. The development of these and similar cell lines will make it possible to identify specific stages of avian lymphoid ontogeny and to study the mechanism of rearrangement and diversification in the avian B lymphocyte.


Author(s):  
Alexander Patera Nugraha ◽  
Fedik Abdul Rantam ◽  
Ida Bagus Narmada ◽  
Diah Savitri Ernawati ◽  
Igo Syaiful Ihsan

Abstract Objective This study aims to confirm whether the GDMSCs isolated from rabbit’s (Oryctolagus cuniculus) gingiva are mesenchymal stem cells (MSCs). Materials and Methods This study design was partly quasi-experimental with an observational design. GDMSCs were isolated from the gingiva of healthy male rabbits (O. cuniculus) (n = 2), 6 months old, and 3 to 5 kg of body weight. The specific cell surface markers of MSCs; clusters of differentiation (CD), namely, CD44, CD73, CD90, CD105, and CD200 expressions; and hematopoietic stem cell surface markers CD34 and CD45 were examined using flow cytometry and immunohistochemistry with immunofluorescence. The osteogenic differentiation of isolated GDMSCs was examined using alizarin red staining. Results GDMSCs in the fourth passage showed a spindle-like formation and fibroblast-like cells that attached to the base of the culture plate. GDMSCs were MSCs that positively expressed CD44, CD73, CD90, CD105, and CD200 but did not express CD34 and CD45 when examined using flow cytometry and immunohistochemical analysis. GDMSCs had osteogenic differentiation confirmed by calcified deposits in vitro with a red–violet and brownish color after alizarin red staining. Conclusion GDMSCs isolated from the rabbits (O. cuniculus) were confirmed as MSCs in vitro documented using immunohistochemistry and flow cytometry. GDMSCs can differentiate into osteogenic lineage in vitro that may be suitable for regenerative dentistry.


2021 ◽  
Vol 54 (03) ◽  
pp. 278-283
Author(s):  
Pallavi Priyadarshini ◽  
Soumi Samuel ◽  
Basan Gowda Kurkalli ◽  
Chethan Kumar ◽  
Basavarajappa Mohana Kumar ◽  
...  

Abstract Background: Adipose-derived stem cells (ADSCs) are the most preferred cell type, based on their phenotypic characteristics, plasticity, and favorable immunological properties for applications in soft-tissue augmentation. Hence, the present in vitro study was aimed to evaluate the adipogenic differentiation potential of human ADSCs upon culturing individually with collagen gel and platelet-rich fibrin (PRF). Materials and methods: The collected lipoaspirate was used for establishing ADSCs using enzymatic digestion method. Then, the cells were analyzed for their morphology, viability, proliferation rate, population doubling time (PDT), colony-forming ability, cell surface markers expression, and osteogenic differentiation as biological properties. Further, ADSCs were evaluated for their adipogenicity using induction media alone, and by culturing with collagen gel and PRF individually for prospective tissue augmentation. Results: ADSCs were successfully established in vitro and exhibited a fibroblast-like morphology throughout the culture period. Cells had higher viability, proliferation potential and showed their ability to form colonies. The positive expression of cell surface markers and osteogenic ability confirmed the potency of ADSCs. The ADSCs cultured on collagen gel and PRF, individually, showed higher number of differentiated adipocytes than ADSCs grown with adipogenic induction medium alone. Conclusion: The extent of lipid accumulation by ADSCs was slightly higher when cultured on collagen gel than on PRF. Additional experiments are required to confirm better suitability of scaffold materials for soft-tissue regeneration.


1988 ◽  
Vol 8 (12) ◽  
pp. 5358-5368 ◽  
Author(s):  
C F Barth ◽  
E H Humphries

The infection of newly hatched chickens with reticuloendotheliosis virus strain T (REV-T) and a nonimmunosuppressive helper virus, chicken syncytial virus, induces rapidly metastatic B-cell lymphomas. In vivo analysis of these tumors with monoclonal antibodies detected the expression of the B-cell surface markers immunoglobulin M (IgM), CIa, Bu2, and CLA-1, but not IgG, Bu1, or a T-cell surface marker, CT-1. Cell lines derived from tumors exhibited the same pattern of staining, suggesting that expression of cell surface markers does not change during in vitro cell line development. All cell lines examined synthesized IgM in varying amounts. Northern (RNA blot) analysis confirmed abundant expression of v-rel mRNA, and Southern analysis revealed rearrangement of both heavy- and light-chain immunoglobulin loci. Analysis of the light-chain locus demonstrated that 20 of 22 lines contained a single rearranged allele. With respect to specific restriction enzyme sites within the V lambda 1 gene, the active allele in any given clone was either diversified or nondiversified. In contrast, examination of the heavy-chain loci within these lines demonstrated that 16 of the 22 had both alleles rearranged. Further diversification of the V lambda 1 locus did not occur after prolonged in vitro passage of the cell lines. We propose that v-rel expression arrests diversification of the light-chain locus in these lymphoid cells, allowing the production of stable, clonal B-cell populations. The development of these and similar cell lines will make it possible to identify specific stages of avian lymphoid ontogeny and to study the mechanism of rearrangement and diversification in the avian B lymphocyte.


Reproduction ◽  
2016 ◽  
Vol 152 (5) ◽  
pp. 447-455 ◽  
Author(s):  
J Loegl ◽  
U Hiden ◽  
E Nussbaumer ◽  
C Schliefsteiner ◽  
S Cvitic ◽  
...  

The human placenta comprises a special type of tissue macrophages, the Hofbauer cells (HBC), which exhibit M2 macrophage phenotype. Several subtypes of M2-polarized macrophages (M2a, M2b and M2c) exist in almost all tissues. Macrophage polarization depends on the way of macrophage activation and leads to the expression of specific cell surface markers and the acquisition of specific functions, including tissue remodeling and the promotion of angiogenesis. The placenta is a highly vascularized and rapidly growing organ, suggesting a role of HBC in feto-placental angiogenesis. We here aimed to characterize the specific polarization and phenotype of HBC and investigated the role of HBC in feto-placental angiogenesis. Therefore, HBC were isolated from third trimester placentas and their phenotype was determined by the presence of cell surface markers (FACS analysis) and secretion of cytokines (ELISA). HBC conditioned medium (CM) was analyzed for pro-angiogenic factors, and the effect of HBC CM on angiogenesis, proliferation and chemoattraction of isolated primary feto-placental endothelial cells (fpEC) was determined in vitro. Our results revealed that isolated HBC possess an M2 polarization, with M2a, M2b and M2c characteristics. HBC secreted the pro-angiogenic molecules VEGF and FGF2. Furthermore, HBC CM stimulated the in vitro angiogenesis of fpEC. However, compared with control medium, chemoattraction of fpEC toward HBC CM was reduced. Proliferation of fpEC was not affected by HBC CM. These findings demonstrate a paracrine regulation of feto-placental angiogenesis by HBC in vitro. Based on our collective results, we propose that the changes in HBC number or phenotype may affect feto-placental angiogenesis.


Sign in / Sign up

Export Citation Format

Share Document