Type X Collagen Degradation in Long-Term Serum-Free Culture of the Embryonic Chick Tibia Following Production of Active Collagenase and Gelatinase

1993 ◽  
Vol 159 (2) ◽  
pp. 528-534 ◽  
Author(s):  
Ada A. Cole ◽  
Tahira Boyd ◽  
Lawrence Luchene ◽  
Klaus E. Kuettner ◽  
Thomas M. Schmid
1986 ◽  
Vol 6 (2) ◽  
pp. 155-162 ◽  
Author(s):  
Alvin P. L. Kwan ◽  
Anthony J. Freemont ◽  
Michael E. Grant

Type X collagen was prepared from medium of long-term cultures of embryonic chick tibiotarsal chondrocytes. Antibodies to type X collagen were raised and used in immunoperoxidase localization studies with embryonic and growing chick tibiotarsus. Strong anti-type X collagen reactivity was detected mainly in the region of hypertrophic chondrocytes, and to a lesser extent in the zone of calcified cartilage. No reactivity was detected in the proliferative zone nor the superficial layer of the cartilage growth plate. These results suggest that type X collagen may play a key role in matrix calcification during growth and development of the skeletal system.


1992 ◽  
Vol 193 (3) ◽  
pp. 277-285 ◽  
Author(s):  
Ada A. Cole ◽  
Lawrence J. Luchene ◽  
Thomas F. Linsenmayer ◽  
Thomas M. Schmid

1991 ◽  
Vol 115 (2) ◽  
pp. 461-471 ◽  
Author(s):  
A Batistatou ◽  
L A Greene

Past studies have shown that serum-free cultures of PC12 cells are a useful model system for studying the neuronal cell death which occurs after neurotrophic factor deprivation. In this experimental paradigm, nerve growth factor (NGF) rescues the cells from death. It is reported here that serum-deprived PC12 cells manifest an endonuclease activity that leads to internucleosomal cleavage of their cellular DNA. This activity is detected within 3 h of serum withdrawal and several hours before any morphological sign of cell degeneration or death. NGF and serum, which promote survival of the cells, inhibit the DNA fragmentation. Aurintricarboxylic acid (ATA), a general inhibitor of nucleases in vitro, suppresses the endonuclease activity and promotes long-term survival of PC12 cells in serum-free cultures. This effect appears to be independent of macromolecular synthesis. In addition, ATA promotes long-term survival of cultured sympathetic neurons after NGF withdrawal. ATA neither promotes nor maintains neurite outgrowth. It is hypothesized that the activation of an endogenous endonuclease could be responsible for neuronal cell death after neurotrophic factor deprivation and that growth factors could promote survival by leading to inhibition of constitutively present endonucleases.


1985 ◽  
Vol 5 (12) ◽  
pp. 1071-1077 ◽  
Author(s):  
Geoffrey A. Stevenson ◽  
J. Guy Lyons ◽  
David A. Cameron ◽  
Robert L. O'Grady

Neoplastic, epithelial cells derived from a spontaneously-arising rat mammary carcinoma have been cultured in a defined medium, in the absence of serum, continuously, for over 2 years. The medium is a mixture of Ham's F12 and Dulbecco's Modified Eagle's media supplemented with insulin, transferrin and bovine serum albumin. The cells have retained their potential to produce tumours and, in culture, a true vertebrate collagenase. This system provides a continuing supply of vertebrate collagenase through the application of recently developed methods.


2020 ◽  
Author(s):  
Julia Fernández-Pérez ◽  
Peter W. Madden ◽  
Robert Thomas Brady ◽  
Peter F. Nowlan ◽  
Mark Ahearne

AbstractDecellularized porcine corneal scaffolds are a potential alternative to human cornea for keratoplasty. Although clinical trials have reported promising results, there can be corneal haze or scar tissue. Here, we examined if recellularizing the scaffolds with human keratocytes would result in a better outcome. Scaffolds were prepared that retained little DNA (14.89 ± 5.56 ng/mg) and demonstrated a lack of cytotoxicity by in vitro. The scaffolds were recellularized using human corneal stromal cells and cultured for between 14 in serum-supplemented media followed by a further 14 days in either serum free or serum-supplemented media. All groups showed full-depth cell penetration after 14 days. When serum was present, staining for ALDH3A1 remained weak but after serum-free culture, staining was brighter and the keratocytes adopted a native dendritic morphology with an increase (p < 0.05) of keratocan, decorin, lumican and CD34 gene expression. A rabbit anterior lamellar keratoplasty model was used to compare implanting a 250 µm thick decellularized lenticule against one that had been recellularized with human stromal cells. In both groups, host rabbit epithelium covered the implants, but transparency was not restored after 3 months. Post-mortem histology showed under the epithelium, a less-compact collagen layer, which appeared to be a regenerating zone with some α-SMA staining, indicating fibrotic cells. In the posterior scaffold, ALDH1A1 staining was present in all the acellular scaffold, but in only one of the recellularized lenticules. We conclude that recellularization with keratocytes alone may not be sufficiently beneficial to justify introducing allogeneic cells without concurrent treatment to further manage keratocyte phenotype.


Development ◽  
1991 ◽  
Vol 111 (1) ◽  
pp. 191-196 ◽  
Author(s):  
T.F. Linsenmayer ◽  
Q.A. Chen ◽  
E. Gibney ◽  
M.K. Gordon ◽  
J.K. Marchant ◽  
...  

To examine the regulation of collagen types IX and X during the hypertrophic phase of endochondral cartilage development, we have employed in situ hybridization and immunofluorescence histochemistry on selected stages of embryonic chick tibiotarsi. The data show that mRNA for type X collagen appears at or about the time that we detect the first appearance of the protein. This result is incompatible with translational regulation, which would require accumulation of the mRNA to occur at an appreciably earlier time. Data on later-stage embryos demonstrate that once hypertrophic chondrocytes initiate synthesis of type X collagen, they sustain high levels of its mRNA during the remainder of the hypertrophic program. This suggests that these cells maintain their integrity until close to the time that they are removed at the advancing marrow cavity. Type X collagen protein in the hypertrophic matrix also extends to the marrow cavity. Type IX collagen is found throughout the hypertrophic matrix, as well as throughout the younger cartilaginous matrices. But the mRNA for this molecule is largely or completely absent from the oldest hypertrophic cells. These data are consistent with a model that we have previously proposed in which newly synthesized type X collagen within the hypertrophic zone can become associated with type II/IX collagen fibrils synthesized and deposited earlier in development (Schmid and Linsenmayer, 1990; Chen et al. 1990).


2020 ◽  
Author(s):  
Carlota Oleaga ◽  
L. Richard Bridges ◽  
Keisha Persaud ◽  
Christopher W. McAleer ◽  
Christopher J. Long ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document