Assessing the Health Benefits of Reducing Particulate Matter Air Pollution in the United States

1998 ◽  
Vol 76 (2) ◽  
pp. 94-106 ◽  
Author(s):  
Bart Ostro ◽  
Lauraine Chestnut
2022 ◽  
Author(s):  
Trevor Elam ◽  
Sorana Raiculescu ◽  
Shyam Biswal ◽  
Zhenyu Zhang ◽  
Michael Orestes ◽  
...  

ABSTRACT Introduction It has been shown that combat environment exposure, including burn pits that produce particulate matter 2.5 (PM2.5), is associated with lower respiratory tract disease in the military population with increased hypothetical risk of upper respiratory disease, but no study has been done that examines the effects of non-combat environmental exposures on the development of chronic rhinosinusitis (CRS) in the active duty population. The primary goal of this study is to evaluate how air pollution exposure correlates to the development of CRS in active duty service members in the United States. Methods The military electronic medical record was queried for active duty service members diagnosed with CRS by an otolaryngologist between January 2016 and January 2018, who have never deployed, stationed in the United States from 2015 to 2018 (n = 399). For each subject, the 1-year mean exposure of PM2.5, particulate matter 10 (PM10), nitrogen dioxide (NO2), and ozone was calculated. The control group was comprised of the same criteria except these patients were diagnosed with cerumen impaction and matched to the case group by age and gender (n = 399). Pollution exposure was calculated based on the Environmental Protection Agency’s data tables for each subject. Values were calculated using chi-square test for categorical variables and the Mann–Whitney U-test for continuous variables. Results Matched cases and controls (n = 399) with 33.1% male showed a statistically significant odds ratio (OR) of 5.99 (95% CI, 2.55-14.03) for exposure of every 5 µg/m3 of PM2.5 increase and the development of CRS when controlling for age, gender, and diagnosis year. When further adjusting for smoking status, the OR was still statistically significant at 3.15 (95% CI, 1.03-9.68). Particulate matter 10, ozone, and NO2 did not show any statistical significance. Odds ratios remained statistically significant when further adjusting for PM10 and ozone, but not NO2. Dose-dependent curves largely did not show a statistical significance; however, they did trend towards increased exposure of PM2.5 leading to an elevated OR. Conclusion This study showed that PM2.5 exposure is a major independent contributor to the development of CRS. Exposure to elevated levels produced statistically significant odds even among smokers and remained significant when controlling for other measured pollutants. There is still much to be understood about the genesis of CRS. From a pollution exposure perspective, a prospective cohort study would better elucidate the risk of the development of CRS among those exposed to other pollutants.


2019 ◽  
Vol 19 (14) ◽  
pp. 9399-9412 ◽  
Author(s):  
Melissa A. Venecek ◽  
Xin Yu ◽  
Michael J. Kleeman

Abstract. The regional concentrations of airborne ultrafine particulate matter mass (Dp<0.1 µm; PM0.1) were predicted in 39 cities across the United States (US) during summertime air pollution episodes. Calculations were performed using a regional source-oriented chemical transport model with 4 km spatial resolution operating on the National Emissions Inventory created by the U.S. Environmental Protection Agency (EPA). Measured source profiles for particle size and composition between 0.01 and 10 µm were used to translate PM total mass to PM0.1. Predicted PM0.1 concentrations exceeded 2 µg m−3 during summer pollution episodes in major urban regions across the US including Los Angeles, the San Francisco Bay Area, Houston, Miami, and New York. PM0.1 spatial gradients were sharper than PM2.5 spatial gradients due to the dominance of primary aerosol in PM0.1. Artificial source tags were used to track contributions to primary PM0.1 and PM2.5 from 15 source categories. On-road gasoline and diesel vehicles made significant contributions to regional PM0.1 in all 39 cities even though peak contributions within 0.3 km of the roadway were not resolved by the 4 km grid cells. Cooking also made significant contributions to PM0.1 in all cities but biomass combustion was only important in locations impacted by summer wildfires. Aviation was a significant source of PM0.1 in cities that had airports within their urban footprints. Industrial sources, including cement manufacturing, process heating, steel foundries, and paper and pulp processing, impacted their immediate vicinity but did not significantly contribute to PM0.1 concentrations in any of the target 39 cities. Natural gas combustion made significant contributions to PM0.1 concentrations due to the widespread use of this fuel for electricity generation, industrial applications, residential use, and commercial use. The major sources of primary PM0.1 and PM2.5 were notably different in many cities. Future epidemiological studies may be able to differentiate PM0.1 and PM2.5 health effects by contrasting cities with different ratios of PM0.1∕PM2.5. In the current study, cities with higher PM0.1∕PM2.5 ratios (ratio greater than 0.10) include Houston, TX, Los Angeles, CA, Bakersfield, CA, Salt Lake City, UT, and Cleveland, OH. Cities with lower PM0.1 to PM2.5 ratios (ratio lower than 0.05) include Lake Charles, LA, Baton Rouge, LA, St. Louis, MO, Baltimore, MD, and Washington, D.C.


2019 ◽  
Vol 116 (18) ◽  
pp. 8775-8780 ◽  
Author(s):  
Andrew L. Goodkind ◽  
Christopher W. Tessum ◽  
Jay S. Coggins ◽  
Jason D. Hill ◽  
Julian D. Marshall

Fine particulate matter (PM2.5) air pollution has been recognized as a major source of mortality in the United States for at least 25 years, yet much remains unknown about which sources are the most harmful, let alone how best to target policies to mitigate them. Such efforts can be improved by employing high-resolution geographically explicit methods for quantifying human health impacts of emissions of PM2.5 and its precursors. Here, we provide a detailed examination of the health and economic impacts of PM2.5 pollution in the United States by linking emission sources with resulting pollution concentrations. We estimate that anthropogenic PM2.5 was responsible for 107,000 premature deaths in 2011, at a cost to society of $886 billion. Of these deaths, 57% were associated with pollution caused by energy consumption [e.g., transportation (28%) and electricity generation (14%)]; another 15% with pollution caused by agricultural activities. A small fraction of emissions, concentrated in or near densely populated areas, plays an outsized role in damaging human health with the most damaging 10% of total emissions accounting for 40% of total damages. We find that 33% of damages occur within 8 km of emission sources, but 25% occur more than 256 km away, emphasizing the importance of tracking both local and long-range impacts. Our paper highlights the importance of a fine-scale approach as marginal damages can vary by over an order of magnitude within a single county. Information presented here can assist mitigation efforts by identifying those sources with the greatest health effects.


2019 ◽  
Vol 116 (40) ◽  
pp. 19857-19862 ◽  
Author(s):  
Peter Tschofen ◽  
Inês L. Azevedo ◽  
Nicholas Z. Muller

Emissions of most pollutants that result in fine particulate matter (PM2.5) formation have been decreasing in the United States. However, this trend has not been uniform across all sectors or regions of the economy. We use integrated assessment models (IAMs) to compute marginal damages for PM2.5-related emissions for each county in the contiguous United States and match location-specific emissions with these marginal damages to compute economy-wide gross external damage (GED) due to premature mortality. We note 4 key findings: First, economy-wide, GED has decreased by more than 20% from 2008 to 2014. Second, while much of the air pollution policies have focused to date on the electricity sector, damages from farms are now larger than those from utilities. Indeed, farms have become the largest contributor to air pollution damages from PM2.5-related emissions. Third, 4 sectors, comprising less than 20% of the national gross domestic product (GDP), are responsible for ∼75% of GED attributable to economic activities. Fourth, uncertainty in GED estimates tends to be high for sectors with predominantly ground-level emissions because these emissions are usually estimated and not measured. These findings suggest that policymakers should target further emissions reductions from such sectors, particularly in transportation and agriculture.


Sign in / Sign up

Export Citation Format

Share Document