Rhabdomyosarcoma-Derived Cell Lines Exhibit Aberrant Expression of the Cell-Cell Adhesion Molecules N-CAM, N-Cadherin, and Cadherin-Associated Proteins

1993 ◽  
Vol 208 (1) ◽  
pp. 84-93 ◽  
Author(s):  
Alejandro Peralta Soler ◽  
Keith R. Johnson ◽  
Margaret J. Wheelock ◽  
Karen A. Knudsen
2000 ◽  
Vol 150 (5) ◽  
pp. 1161-1176 ◽  
Author(s):  
Kouichi Tachibana ◽  
Hiroyuki Nakanishi ◽  
Kenji Mandai ◽  
Kumi Ozaki ◽  
Wataru Ikeda ◽  
...  

We have found a new cell–cell adhesion system at cadherin-based cell–cell adherens junctions (AJs) consisting of at least nectin and l-afadin. Nectin is a Ca2+-independent homophilic immunoglobulin-like adhesion molecule, and l-afadin is an actin filament-binding protein that connects the cytoplasmic region of nectin to the actin cytoskeleton. Both the trans-interaction of nectin and the interaction of nectin with l-afadin are necessary for their colocalization with E-cadherin and catenins at AJs. Here, we examined the mechanism of interaction between these two cell–cell adhesion systems at AJs by the use of α-catenin–deficient F9 cell lines and cadherin-deficient L cell lines stably expressing their various components. We showed here that nectin and E-cadherin were colocalized through l-afadin and the COOH-terminal half of α-catenin at AJs. Nectin trans-interacted independently of E-cadherin, and the complex of E-cadherin and α- and β-catenins was recruited to nectin-based cell–cell adhesion sites through l-afadin without the trans-interaction of E-cadherin. Our results indicate that nectin and cadherin interact through their cytoplasmic domain–associated proteins and suggest that these two cell–cell adhesion systems cooperatively organize cell–cell AJs.


Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 118
Author(s):  
David de Agustín-Durán ◽  
Isabel Mateos-White ◽  
Jaime Fabra-Beser ◽  
Cristina Gil-Sanz

The neocortex is an exquisitely organized structure achieved through complex cellular processes from the generation of neural cells to their integration into cortical circuits after complex migration processes. During this long journey, neural cells need to establish and release adhesive interactions through cell surface receptors known as cell adhesion molecules (CAMs). Several types of CAMs have been described regulating different aspects of neurodevelopment. Whereas some of them mediate interactions with the extracellular matrix, others allow contact with additional cells. In this review, we will focus on the role of two important families of cell–cell adhesion molecules (C-CAMs), classical cadherins and nectins, as well as in their effectors, in the control of fundamental processes related with corticogenesis, with special attention in the cooperative actions among the two families of C-CAMs.


2008 ◽  
Vol 16 (3) ◽  
pp. 349-353 ◽  
Author(s):  
James L. Burchette ◽  
Tram T. Pham ◽  
Steven P. Higgins ◽  
Jonathan L. Cook ◽  
Alejandro Peralta Soler

2000 ◽  
Vol 275 (14) ◽  
pp. 10291-10299 ◽  
Author(s):  
Keiko Satoh-Horikawa ◽  
Hiroyuki Nakanishi ◽  
Kenichi Takahashi ◽  
Masako Miyahara ◽  
Miyuki Nishimura ◽  
...  

Development ◽  
1989 ◽  
Vol 105 (3) ◽  
pp. 505-519 ◽  
Author(s):  
P.C. Letourneau ◽  
T.A. Shattuck

Actin filaments and their interactions with cell surface molecules have key roles in tissue cell behaviour. Axonal pathfinding during embryogenesis, an especially complex cell behaviour, is based on the migration of nerve growth cones. We have used fluorescence immunocytochemistry to examine the distribution in growth cones, their filopodia and lamellipodia of several actin-associated proteins and nerve cell adhesion molecules. The leading margins of chick dorsal root ganglion nerve growth cones and their protrusions stain strongly for f-actin, filamin, alpha-actinin, myosin, tropomyosin, talin and vinculin. MAP2 is absent from DRG growth cones, and staining for spectrin fodrin extends into growth cones, but not along filopodia. Thus, organization of the leading margins of growth cones may strongly resemble the leading lamella of migrating fibroblasts. The adhesion-mediating molecules integrin, L1, N-CAM and A-CAM are all found on DRG neurites and growth cones. However, filopodia stain relatively more strongly for integrin and L1 than for A-CAM or N-CAM. In fact, the 180 X 10(3) Mr form of N-CAM may be absent from most of the length of filopodia. DRG neurones cultured in cytochalasin B display differences in immunofluorescence staining which further emphasize that these adhesion molecules interact differentially with the actin filament system of migrating growth cones. Several models for neuronal morphogenesis emphasize the importance of regulation of the expression of adhesion molecules. Our results support hypotheses that cellular distribution and transmembrane interactions are key elements in the functions of these adhesion molecules during axonal pathfinding.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Chee Wai Wong ◽  
Danielle E. Dye ◽  
Deirdre R. Coombe

Metastasis is a major clinical problem and results in a poor prognosis for most cancers. The metastatic pathway describes the process by which cancer cells give rise to a metastatic lesion in a new tissue or organ. It consists of interconnecting steps all of which must be successfully completed to result in a metastasis. Cell-cell adhesion is a key aspect of many of these steps. Adhesion molecules belonging to the immunoglobulin superfamily (Ig-SF) commonly play a central role in cell-cell adhesion, and a number of these molecules have been associated with cancer progression and a metastatic phenotype. Surprisingly, the contribution of Ig-SF members to metastasis has not received the attention afforded other cell adhesion molecules (CAMs) such as the integrins. Here we examine the steps in the metastatic pathway focusing on how the Ig-SF members, melanoma cell adhesion molecule (MCAM), L1CAM, neural CAM (NCAM), leukocyte CAM (ALCAM), intercellular CAM-1 (ICAM-1) and platelet endothelial CAM-1 (PECAM-1) could play a role. Although much remains to be understood, this review aims to raise the profile of Ig-SF members in metastasis formation and prompt further research that could lead to useful clinical outcomes.


Author(s):  
Peter Sonderegger ◽  
Stefan Kunz ◽  
Christoph Rader ◽  
Daniel M. Suter ◽  
Esther T. Stoeckli

2010 ◽  
Vol 240 (1) ◽  
pp. 149-161 ◽  
Author(s):  
Yoshio Wakamatsu ◽  
Daisuke Sakai ◽  
Takashi Suzuki ◽  
Noriko Osumi

Sign in / Sign up

Export Citation Format

Share Document