scholarly journals Two Cell Adhesion Molecules, Nectin and Cadherin, Interact through Their Cytoplasmic Domain–Associated Proteins

2000 ◽  
Vol 150 (5) ◽  
pp. 1161-1176 ◽  
Author(s):  
Kouichi Tachibana ◽  
Hiroyuki Nakanishi ◽  
Kenji Mandai ◽  
Kumi Ozaki ◽  
Wataru Ikeda ◽  
...  

We have found a new cell–cell adhesion system at cadherin-based cell–cell adherens junctions (AJs) consisting of at least nectin and l-afadin. Nectin is a Ca2+-independent homophilic immunoglobulin-like adhesion molecule, and l-afadin is an actin filament-binding protein that connects the cytoplasmic region of nectin to the actin cytoskeleton. Both the trans-interaction of nectin and the interaction of nectin with l-afadin are necessary for their colocalization with E-cadherin and catenins at AJs. Here, we examined the mechanism of interaction between these two cell–cell adhesion systems at AJs by the use of α-catenin–deficient F9 cell lines and cadherin-deficient L cell lines stably expressing their various components. We showed here that nectin and E-cadherin were colocalized through l-afadin and the COOH-terminal half of α-catenin at AJs. Nectin trans-interacted independently of E-cadherin, and the complex of E-cadherin and α- and β-catenins was recruited to nectin-based cell–cell adhesion sites through l-afadin without the trans-interaction of E-cadherin. Our results indicate that nectin and cadherin interact through their cytoplasmic domain–associated proteins and suggest that these two cell–cell adhesion systems cooperatively organize cell–cell AJs.

1998 ◽  
Vol 111 (8) ◽  
pp. 1071-1080 ◽  
Author(s):  
S.M. Reuver ◽  
C.C. Garner

Members of the SAP family of synapse-associated proteins have recently emerged as central players in the molecular organization of synapses. In this study, we have examined the mechanism that localizes one member, SAP97, to sites of cell-cell contact. Utilizing epithelial CACO-2 cells and fibroblast L-cells as model systems, we demonstrate that SAP97 is associated with the submembranous cortical cytoskeleton at cell-cell adhesion sites. Furthermore, we show that its localization into this structure is triggered by E-cadherin. Although SAP97 can be found in an E-cadherin/catenin adhesion complex, this interaction seems to be mediated by the attachment of SAP97 to the cortical cytoskeleton. Our results are consistent with a model in which SAP97 is recruited to sites of cell-cell contact via an E-cadherin induced assembly of the cortical cytoskeleton.


1997 ◽  
Vol 139 (4) ◽  
pp. 1047-1059 ◽  
Author(s):  
Kenji Takaishi ◽  
Takuya Sasaki ◽  
Hirokazu Kotani ◽  
Hideo Nishioka ◽  
Yoshimi Takai

The Rho small G protein family, consisting of the Rho, Rac, and Cdc42 subfamilies, regulates various cell functions, such as cell shape change, cell motility, and cytokinesis, through reorganization of the actin cytoskeleton. We show here that the Rac and Rho subfamilies furthermore regulate cell–cell adhesion. We prepared MDCK cell lines stably expressing each of dominant active mutants of RhoA (sMDCK-RhoDA), Rac1 (sMDCK-RacDA), and Cdc42 (sMDCK-Cdc42DA) and dominant negative mutants of Rac1 (sMDCK-RacDN) and Cdc42 (sMDCK-Cdc42DN) and analyzed cell adhesion in these cell lines. The actin filaments at the cell–cell adhesion sites markedly increased in sMDCK-RacDA cells, whereas they apparently decreased in sMDCK-RacDN cells, compared with those in wild-type MDCK cells. Both E-cadherin and β-catenin, adherens junctional proteins, at the cell–cell adhesion sites also increased in sMDCK-RacDA cells, whereas both of them decreased in sMDCK-RacDN cells. The detergent solubility assay indicated that the amount of detergent-insoluble E-cadherin increased in sMDCK-RacDA cells, whereas it slightly decreased in sMDCK-RacDN cells, compared with that in wild-type MDCK cells. In sMDCK-RhoDA, -Cdc42DA, and -Cdc42DN cells, neither of these proteins at the cell–cell adhesion sites was apparently affected. ZO-1, a tight junctional protein, was not apparently affected in any of the transformant cell lines. Electron microscopic analysis revealed that sMDCK-RacDA cells tightly made contact with each other throughout the lateral membranes, whereas wild-type MDCK and sMDCK-RacDN cells tightly and linearly made contact at the apical area of the lateral membranes. These results suggest that the Rac subfamily regulates the formation of the cadherin-based cell– cell adhesion. Microinjection of C3 into wild-type MDCK cells inhibited the formation of both the cadherin-based cell–cell adhesion and the tight junction, but microinjection of C3 into sMDCK-RacDA cells showed little effect on the localization of the actin filaments and E-cadherin at the cell–cell adhesion sites. These results suggest that the Rho subfamily is necessary for the formation of both the cadherin-based cell– cell adhesion and the tight junction, but not essential for the Rac subfamily-regulated, cadherin-based cell– cell adhesion.


2002 ◽  
Vol 115 (16) ◽  
pp. 3331-3340 ◽  
Author(s):  
Carla Perego ◽  
Cristina Vanoni ◽  
Silvia Massari ◽  
Andrea Raimondi ◽  
Sandra Pola ◽  
...  

As little is known about the role of cadherin-mediated cell-cell adhesion in astrocytes and its alteration in migrating and invasive glioblastomas, we investigated its molecular composition and organisation in primary cultured astrocytes and the T98G and U373MG glioblastoma cell lines. Biochemical and morphological analysis indicated that all three cell types express all of the structural components of the adhesion system, including the LIN-7 PDZ protein,a novel component involved in the organisation of the junctional domain in epithelia and neurons. However, only the astrocytes and T98G cells generated and maintained mature adhesive junctional domains to which LIN-7 was recruited. Alterations in the junctional domain of U373MG cells were associated with higher motility in a poly-L-lysine migration assay. When the T98G cells were cultured on Matrigel matrix, they acquired invasive properties but, despite unchanged cadherin adhesion system protein levels, the invasive T98G cell-cell contacts failed to accumulate LIN-7 and failed to mature. These results identify the LIN-7 PDZ protein as a marker of cell adhesion maturity and cell invasion and indicate that instability and disorganisation of cadherin-mediated junctions rather than reduced expression of cadherin-catenin system components are required to promote migration and invasiveness in glioblastoma cell lines.


Development ◽  
1993 ◽  
Vol 118 (2) ◽  
pp. 629-640 ◽  
Author(s):  
S. Schneider ◽  
K. Herrenknecht ◽  
S. Butz ◽  
R. Kemler ◽  
P. Hausen

In the course of an analysis of cell-cell adhesion in the Xenopus embryo, antibodies directed against alpha- and beta-catenin were applied to investigate their relation to the cadherins occurring early in this system. The results demonstrate that alpha- and beta-catenin are provided maternally and increase in amount throughout embryogenesis. Immunoprecipitations indicate that both of the catenins are complexed to U-cadherin in the early phase of embryogenesis and to E-cadherin, when it appears during gastrulation. An excess of alpha-catenin occurs in free form in the early embryo, whereas all of the beta-catenin seems to be complexed to cadherin. Synthesis of the two components throughout early embryogenesis and their binding to newly synthesized cadherins were demonstrated by metabolic labelling. The spatial distribution of alpha-catenin was analysed by immunohistology. During cleavage alpha-catenin is deposited evenly along the plasma membranes within the embryo, while the cell peripheries at the surface of the embryo remain devoid of alpha-catenin. At later stages, the pattern of alpha-catenin distribution becomes more complex. Quantitative differences in the intensity of staining along the plasma membranes in the different regions of the embryo can be distinguished. Particularly the appearance of E-cadherin in the gastrula ectoderm is accompanied by conspicuous depositions of alpha-catenin along the respective plasma membranes in this layer. All cells in the later embryo, apart from the neural crest cells, carry alpha-catenin on their plasma membranes indicating the universal character of cadherin-mediated cell-cell adhesion in the Xenopus embryo.


1991 ◽  
Vol 115 (2) ◽  
pp. 517-533 ◽  
Author(s):  
P Navarro ◽  
M Gómez ◽  
A Pizarro ◽  
C Gamallo ◽  
M Quintanilla ◽  
...  

The expression of the cell-cell adhesion molecules E- and P-cadherin has been analyzed in seven mouse epidermal keratinocyte cell lines representative of different stages of epidermal carcinogenesis. An inverse correlation between the amount of E-cadherin protein and tumorigenicity of the cell lines has been found, together with a complete absence of E-cadherin protein and mRNA expression in three carcinoma cell lines (the epithelioid HaCa4 and the fibroblastoid CarB and CarC cells). A similar result has been detected in tumors induced in nude mice by the cell lines, where induction of E-cadherin expression takes place in moderately differentiated squamous cell carcinomas induced by HaCa4 cells, although at much lower levels than in well-differentiated tumors induced by the epithelial PDV or PDVC57 cell lines. Complete absence of E-cadherin expression has been observed in spindle cell carcinomas induced by CarB or CarC cells. P-cadherin protein was detected in all cell lines that exhibit an epithelial (MCA3D, AT5, PDV, and PDVC57) or epithelioid (HaCa4) morphology, as well as in nude mouse tumors, independent of their tumorigenic capabilities. However, complete absence of P-cadherin was observed in the fibroblast-like cells (CarB and CarC) and in spindle cell carcinomas. The introduction of an exogenous E-cadherin cDNA into HaCa4 cells, or reactivation of the endogenous E-cadherin gene, leads to a partial suppression of the tumorigenicity of this highly malignant cell line. These results suggest a role for E-cadherin in the progression to malignancy of mouse epidermal carcinogenesis. They also suggest that the loss of both E- and P-cadherin could be associated to the final stage of carcinogenesis, the development of spindle cell carcinomas.


2005 ◽  
Vol 10 (5) ◽  
pp. 435-445 ◽  
Author(s):  
Ryoko Okamoto ◽  
Kenji Irie ◽  
Akio Yamada ◽  
Tatsuo Katata ◽  
Atsunori Fukuhara ◽  
...  

2001 ◽  
Vol 12 (6) ◽  
pp. 1595-1609 ◽  
Author(s):  
Shigekazu Yokoyama ◽  
Kouichi Tachibana ◽  
Hiroyuki Nakanishi ◽  
Yasunori Yamamoto ◽  
Kenji Irie ◽  
...  

ZO-1 is an actin filament (F-actin)–binding protein that localizes to tight junctions and connects claudin to the actin cytoskeleton in epithelial cells. In nonepithelial cells that have no tight junctions, ZO-1 localizes to adherens junctions (AJs) and may connect cadherin to the actin cytoskeleton indirectly through β- and α-catenins as one of many F-actin–binding proteins. Nectin is an immunoglobulin-like adhesion molecule that localizes to AJs and is associated with the actin cytoskeleton through afadin, an F-actin–binding protein. Ponsin is an afadin- and vinculin-binding protein that also localizes to AJs. The nectin-afadin complex has a potency to recruit the E-cadherin–β-catenin complex through α-catenin in a manner independent of ponsin. By the use of cadherin-deficient L cell lines stably expressing various components of the cadherin-catenin and nectin-afadin systems, and α-catenin–deficient F9 cell lines, we examined here whether nectin recruits ZO-1 to nectin-based cell-cell adhesion sites. Nectin showed a potency to recruit not only α-catenin but also ZO-1 to nectin-based cell-cell adhesion sites. This recruitment of ZO-1 was dependent on afadin but independent of α-catenin and ponsin. These results indicate that ZO-1 localizes to cadherin-based AJs through interactions not only with α-catenin but also with the nectin-afadin system.


2001 ◽  
Vol 12 (7) ◽  
pp. 1983-1993 ◽  
Author(s):  
Sun-Ho Kee ◽  
Peter M. Steinert

The association of the cytoskeleton with the cadherin–catenin complex is essential for strong cell-cell adhesion in epithelial cells. In this study, we have investigated the effect of microtubule organization on cell-cell adhesion in differentiating keratinocytes. When microtubules of normal human epidermal keratinocytes (NHEKs) grown in low calcium media (0.05 mM) were disrupted with nocodazole or colcemid, cell-cell adhesion was induced through relocalization of the E-cadherin–catenin–actin complex to the cell periphery. This was accompanied by actin polymerization. Also, it was found that microtubule disruption-induced cell-cell adhesion was significantly reduced in more advanced differentiated keratinocytes. For example, when NHEK cells cultured under high calcium (1.2 mM) for 8 d and then in low calcium for 1 d were treated with nocodazole, there was no induction of cell-cell adhesion. Also long-term treatment of a phorbol ester for 48 h inhibited nocodazole-induced cell-cell adhesion of NHEK. Furthermore, this nocodazole-induced cell-cell adhesion could be observed in squamous cancer cell lines (A431 and SCC-5, -9, and -25) under low calcium condition, but not in the keratinocyte cell lines derived from normal epidermis (HaCaT, RHEK). On the other hand, HaCaT cells continuously cultivated in low calcium media regained a less differentiated phenotype such as decreased expression of cytokeratin 10, and increased K5; these changes were accompanied with inducibility of cell-cell adhesion by nocodazole. Together, our results suggest that microtubule disruption can induce the cell-cell adhesion via activation of endogenous E-cadherin in non- or early differentiating keratinocytes. However, this is no longer possible in advanced terminally differentiating keratinocytes, possibly due to irreversible changes effected by cell envelope barrier formation.


Sign in / Sign up

Export Citation Format

Share Document