DNA Fragmentation Induced by Protease Activation in p53-Null Human Leukemia HL60 Cells Undergoing Apoptosis Following Treatment with the Topoisomerase I Inhibitor Camptothecin: Cell-Free System Studies

1996 ◽  
Vol 226 (2) ◽  
pp. 292-301 ◽  
Author(s):  
Tsunehiro Shimizu ◽  
Yves Pommier
Blood ◽  
1995 ◽  
Vol 85 (3) ◽  
pp. 804-811 ◽  
Author(s):  
TG Gabig ◽  
CD Crean ◽  
PL Mantel ◽  
R Rosli

Studies of neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation in a cell-free system showed that the low molecular-weight guanosine triphosphatase (GTPase) Rac was required, and that Rap1a may participate in activation of the catalytic complex. Full-length posttranslationally modified Rac2 was active, whereas only the 1–166 truncated form of Rap1a was functional in the cell-free system, and thus, clarification of the function of Rap1a and Rac2 in intact human phagocytes is needed to provide further insight into their roles as signal transducers from plasma membrane receptors. In the present studies, oligonucleotide-directed mutagenesis was used to introduce a series of mutations into human rap1a or rac2 in the mammalian expression vector pSR alpha neo. HL60 cells transfected with wild-type or mutated rac2 or rap1a cDNA constructs and control HL60 cells transfected with the pSR alpha neo vector containing no inserted cDNA were selected in G418-containing media, then subclones were isolated. Compared with the parent HL60 cells, each of the stable transfected cell lines differentiated similarly into neutrophil-like cells and expressed comparable levels of NADPH oxidase components p47- phox, p67-phox and gp91-phox. The differentiated vector control cell line produced O2. in response to receptor stimulation at rates that were not significantly different from parent HL60 cells. O2-. production by differentiated cell lines expressing mutated N17 Rap1a or N17 Rac2 dominant-negative proteins was inhibited, whereas O2-. production by the subline overexpressing wild-type Rap1a was increased by fourfold. O2-. production by the differentiated cell line expressing GTPase-defective V12 Rap1a was also significantly inhibited, a finding that is consistent with a requirement for cycling between guanosine diphosphate- and GTP-bound forms of Rap1a for continuous NADPH oxidase activation in intact neutrophils. A model is proposed in which Rac2 mediates assembly of the p47 and p67 oxidase components on the cytosolic face of the plasma membrane via cytoskeletal reorganization, whereas Rap1a functions downstream as the final activation switch involving direct physical interaction with the transmembrane flavocytochrome component of the NADPH oxidase.


Blood ◽  
1993 ◽  
Vol 81 (5) ◽  
pp. 1359-1368 ◽  
Author(s):  
E Solary ◽  
R Bertrand ◽  
KW Kohn ◽  
Y Pommier

The effects of monocytic/macrophage and granulocytic differentiation induced by phorbol myristate acetate (TPA) and all-trans retinoic acid, respectively, were tested on the induction of apoptosis in human promyelocytic leukemia HL-60 cells treated with topoisomerase I and II inhibitors. Using a filter-binding assay, we observed a strong inhibition of DNA fragmentation induced by 3- and 24-hour continuous exposure to camptothecin, VP-16, VM-26, and m-AMSA in TPA- differentiated cells. The inhibition of the typical internucleosomal DNA fragmentation was confirmed by agarose gel electrophoresis. By contrast, drug-induced DNA fragmentation was not inhibited in retinoic acid-differentiated cells, and apoptosis occurred in these cells after 4 to 5 days in the absence of drug treatment. The TPA inhibitory effect was maximal after 24 hours of treatment and was correlated with differentiation, because phorbol dibutyrate ester was active, whereas 4- alpha-TPA, a nontumor promoter that does not induce differentiation, was not active. Using alkaline elution, we observed that TPA and retinoic acid differentiation were associated with changes in topoisomerase-mediated DNA breaks that were not correlated with their differential effects on drug-induced DNA fragmentation. Moreover, TPA also inhibited DNA fragmentation induced by vinblastine, cycloheximide, calphostin C, and x-rays. Using a cell-free system, we observed that DNA fragmentation was not inhibited in nuclei from TPA-differentiated cells. Rather, inhibition of apoptosis seemed to take place in the cytoplasm. We conclude that phenotypic changes associated with TPA- induced differentiation include inactivation of a cytoplasmic activity that can induce DNA fragmentation associated with apoptosis.


Blood ◽  
1993 ◽  
Vol 81 (5) ◽  
pp. 1359-1368 ◽  
Author(s):  
E Solary ◽  
R Bertrand ◽  
KW Kohn ◽  
Y Pommier

Abstract The effects of monocytic/macrophage and granulocytic differentiation induced by phorbol myristate acetate (TPA) and all-trans retinoic acid, respectively, were tested on the induction of apoptosis in human promyelocytic leukemia HL-60 cells treated with topoisomerase I and II inhibitors. Using a filter-binding assay, we observed a strong inhibition of DNA fragmentation induced by 3- and 24-hour continuous exposure to camptothecin, VP-16, VM-26, and m-AMSA in TPA- differentiated cells. The inhibition of the typical internucleosomal DNA fragmentation was confirmed by agarose gel electrophoresis. By contrast, drug-induced DNA fragmentation was not inhibited in retinoic acid-differentiated cells, and apoptosis occurred in these cells after 4 to 5 days in the absence of drug treatment. The TPA inhibitory effect was maximal after 24 hours of treatment and was correlated with differentiation, because phorbol dibutyrate ester was active, whereas 4- alpha-TPA, a nontumor promoter that does not induce differentiation, was not active. Using alkaline elution, we observed that TPA and retinoic acid differentiation were associated with changes in topoisomerase-mediated DNA breaks that were not correlated with their differential effects on drug-induced DNA fragmentation. Moreover, TPA also inhibited DNA fragmentation induced by vinblastine, cycloheximide, calphostin C, and x-rays. Using a cell-free system, we observed that DNA fragmentation was not inhibited in nuclei from TPA-differentiated cells. Rather, inhibition of apoptosis seemed to take place in the cytoplasm. We conclude that phenotypic changes associated with TPA- induced differentiation include inactivation of a cytoplasmic activity that can induce DNA fragmentation associated with apoptosis.


1996 ◽  
Vol 183 (4) ◽  
pp. 1533-1544 ◽  
Author(s):  
N Zamzami ◽  
S A Susin ◽  
P Marchetti ◽  
T Hirsch ◽  
I Gómez-Monterrey ◽  
...  

Anucleate cells can be induced to undergo programmed cell death (PCD), indicating the existence of a cytoplasmic PCD pathway that functions independently from the nucleus. Cytoplasmic structures including mitochondria have been shown to participate in the control of apoptotic nuclear disintegration. Before cells exhibit common signs of nuclear apoptosis (chromatin condensation and endonuclease-mediated DNA fragmentation), they undergo a reduction of the mitochondrial transmembrane potential (delta psi m) that may be due to the opening of mitochondrial permeability transition (PT) pores. Here, we present direct evidence indicating that mitochondrial PT constitutes a critical early event of the apoptotic process. In a cell-free system combining purified mitochondria and nuclei, mitochondria undergoing PT suffice to induce chromatin condensation and DNA fragmentation. Induction of PT by pharmacological agents augments the apoptosis-inducing potential of mitochondria. In contrast, prevention of PT by pharmacological agents impedes nuclear apoptosis, both in vitro and in vivo. Mitochondria from hepatocytes or lymphoid cells undergoing apoptosis, but not those from normal cells, induce disintegration of isolated Hela nuclei. A specific ligand of the mitochondrial adenine nucleotide translocator (ANT), bongkreik acid, inhibits PT and reduces apoptosis induction by mitochondria in a cell-free system. Moreover, it inhibits the induction of apoptosis in intact cells. Several pieces of evidence suggest that the proto-oncogene product Bcl-2 inhibits apoptosis by preventing mitochondrial PT. First, to inhibit nuclear apoptosis, Bcl-2 must be localized in mitochondrial but not nuclear membranes. Second, transfection-enforced hyperexpression of Bcl-2 directly abolishes the induction of mitochondrial PT in response to a protonophore, a pro-oxidant, as well as to the ANT ligand atractyloside, correlating with its apoptosis-inhibitory effect. In conclusion, mitochondrial PT appears to be a critical step of the apoptotic cascade.


Sign in / Sign up

Export Citation Format

Share Document