Plasmodium falciparum: Stage-Specific Ribosomal RNA as a Potential Target for Monitoring Parasite Development in Anopheles stephensi

1993 ◽  
Vol 76 (1) ◽  
pp. 32-38 ◽  
Author(s):  
J. Li ◽  
R.A. Wirtz ◽  
I. Schneider ◽  
O.V. Muratova ◽  
T.F. Mccutchan ◽  
...  
Parasitology ◽  
1990 ◽  
Vol 101 (2) ◽  
pp. 193-200 ◽  
Author(s):  
A. M. Feldmann ◽  
P. F. Billingsley ◽  
E. Savelkoul

Blood digestion was studied in strains of Anopheles stephensi which had been genetically selected for either refractoriness or susceptibility to infection by Plasmodium falciparum. Females of the refractory Pb3—9a strain ingested more blood than selected (Sda-500) and unselected (Punjab) susceptible females and began to degrade the haemoglobin soon after feeding. In susceptible females, haemoglobin degradation started only after a significant post-feeding lag period. Total protein content of the midgut after the bloodmeal was correspondingly higher for refractory than for susceptible females, but absolute and relative rates of protein degradation were not significantly different between the different mosquito strains. Bloodmeal induction of midgut trypsin activity and the maximal trypsin activity were the same for the different strains. The residual aminopeptidase activity and its relative post-feeding activity (enzyme units per midgut) were significantly higher in refractory females. However, when converting to specific aminopeptidase activity, no differences between strains were evident. The results indicate that both the early initiation of haemoglobin degradation and higher aminopeptidase activity in the Pb3—9a refractory strain are important in the limitation of parasite development within the mosquito midgut, whereas trypsin plays no role in this process.


2020 ◽  
Author(s):  
Perrine Marcenac ◽  
W. Robert Shaw ◽  
Evdoxia G. Kakani ◽  
Sara N. Mitchell ◽  
Adam South ◽  
...  

AbstractAnopheles mosquitoes have transmitted Plasmodium parasites for millions of years, yet it remains unclear whether they suffer fitness costs to infection. Here we report that the fecundity of virgin and mated females of two important vectors—Anopheles gambiae and Anopheles stephensi—is not affected by infection with Plasmodium falciparum, demonstrating that these human malaria parasites do not inflict reproductive costs to their natural mosquito hosts. Additionally, parasite development is not impacted by mating status. However, in field studies using different P. falciparum isolates in Anopheles coluzzii, we find that Mating-Induced Stimulator of Oogenesis (MISO), a female reproductive gene strongly induced after mating by the sexual transfer of the steroid hormone 20-hydroxyecdysone (20E), protects females from incurring fecundity costs to infection. MISO-silenced females produce fewer eggs as they become increasingly infected with P. falciparum, while parasite development is not impacted by this gene silencing. Interestingly, previous work had shown that sexual transfer of 20E has specifically evolved in Cellia species of the Anopheles genus, driving the co-adaptation of MISO. Our data therefore suggest that evolution of male-female sexual interactions may have promoted Anopheles tolerance to P. falciparum infection in the Cellia subgenus, which comprises the most important malaria vectors.Author summaryPlasmodium falciparum, the deadliest form of human malaria, is transmitted when female Anopheles mosquitoes bite people and take a blood meal in order to develop eggs. To date, it is still poorly understood whether Anopheles mosquitoes that get infected with P. falciparum suffer fitness costs. Here, we find that the number of eggs produced by Anopheles gambiae and Anopheles stephensi females is not affected by P. falciparum infection, and that the mating status of the mosquitoes does not impact the parasite. However, in field experiments infecting a related species, Anopheles coluzzii, with P. falciparum using blood from donors in Burkina Faso, we find that interfering with the expression of a gene normally triggered by the sexual transfer of the steroid hormone 20-hydroxyecdysone induces increasing costs to egg development as females become more infected with P. falciparum, with no impacts on the parasite. The results of our study suggest that pathways triggered by mating may help Anopheles prevent reproductive costs associated with P. falciparum infection, providing new insights into evolutionary strategies adopted by anophelines in the face of a longstanding association with Plasmodium parasites.


2019 ◽  
Author(s):  
Jessica L. Waite ◽  
Eunho Suh ◽  
Penelope A. Lynch ◽  
Matthew B. Thomas

AbstractThe rate of malaria transmission is strongly determined by parasite development time in the mosquito, known as the extrinsic incubation period (EIP), since the quicker parasites develop, the greater the chance that the vector will survive long enough for the parasite to complete development and be transmitted. EIP is known to be temperature dependent but this relationship is surprisingly poorly characterized. There is a single degree-day model for EIP of Plasmodium falciparum that derives from a limited number of poorly controlled studies conducted almost a century ago. Here, we show that the established degree-day model greatly underestimates the rate of development of P. falciparum in both Anopheles stephensi and An. gambiae mosquitoes at temperatures in the range of 17-20°C. We also show that realistic daily temperature fluctuation further speeds parasite development. These novel results challenge one of the longest standing models in malaria biology and have potentially important implications for understanding the impacts of climate change.


2020 ◽  
Vol 16 (12) ◽  
pp. e1008908
Author(s):  
Perrine Marcenac ◽  
W. Robert Shaw ◽  
Evdoxia G. Kakani ◽  
Sara N. Mitchell ◽  
Adam South ◽  
...  

Anopheles mosquitoes have transmitted Plasmodium parasites for millions of years, yet it remains unclear whether they suffer fitness costs to infection. Here we report that the fecundity of virgin and mated females of two important vectors—Anopheles gambiae and Anopheles stephensi—is not affected by infection with Plasmodium falciparum, demonstrating that these human malaria parasites do not inflict this reproductive cost on their natural mosquito hosts. Additionally, parasite development is not impacted by mating status. However, in field studies using different P. falciparum isolates in Anopheles coluzzii, we find that Mating-Induced Stimulator of Oogenesis (MISO), a female reproductive gene strongly induced after mating by the sexual transfer of the steroid hormone 20-hydroxyecdysone (20E), protects females from incurring fecundity costs to infection. MISO-silenced females produce fewer eggs as they become increasingly infected with P. falciparum, while parasite development is not impacted by this gene silencing. Interestingly, previous work had shown that sexual transfer of 20E has specifically evolved in Cellia species of the Anopheles genus, driving the co-adaptation of MISO. Our data therefore suggest that evolution of male-female sexual interactions may have promoted Anopheles tolerance to P. falciparum infection in the Cellia subgenus, which comprises the most important malaria vectors.


Blood ◽  
1990 ◽  
Vol 76 (6) ◽  
pp. 1250-1255 ◽  
Author(s):  
S Whitehead ◽  
TE Peto

Abstract Deferoxamine (DF) has antimalarial activity that can be demonstrated in vitro and in vivo. This study is designed to examine the speed of onset and stage dependency of growth inhibition by DF and to determine whether its antimalarial activity is cytostatic or cytocidal. Growth inhibition was assessed by suppression of hypoxanthine incorporation and differences in morphologic appearance between treated and control parasites. Using synchronized in vitro cultures of Plasmodium falciparum, growth inhibition by DF was detected within a single parasite cycle. Ring and nonpigmented trophozoite stages were sensitive to the inhibitory effect of DF but cytostatic antimalarial activity was suggested by evidence of parasite recovery in later cycles. However, profound growth inhibition, with no evidence of subsequent recovery, occurred when pigmented trophozoites and early schizonts were exposed to DF. At this stage in parasite development, the activity of DF was cytocidal and furthermore, the critical period of exposure may be as short as 6 hours. These observations suggest that iron chelators may have a role in the treatment of clinical malaria.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ajeet Kumar Mohanty ◽  
Charles de Souza ◽  
Deepika Harjai ◽  
Prathamesh Ghavanalkar ◽  
Mezia Fernandes ◽  
...  

Abstract Background Efforts to study the biology of Plasmodium vivax liver stages, particularly the latent hypnozoites, have been hampered by the limited availability of P. vivax sporozoites. Anopheles stephensi is a major urban malaria vector in Goa and elsewhere in South Asia. Using P. vivax patient blood samples, a series of standard membrane-feeding experiments were performed with An. stephensi under the US NIH International Center of Excellence for Malaria Research (ICEMR) for Malaria Evolution in South Asia (MESA). The goal was to understand the dynamics of parasite development in mosquitoes as well as the production of P. vivax sporozoites. To obtain a robust supply of P. vivax sporozoites, mosquito-rearing and mosquito membrane-feeding techniques were optimized, which are described here. Methods Membrane-feeding experiments were conducted using both wild and laboratory-colonized An. stephensi mosquitoes and patient-derived P. vivax collected at the Goa Medical College and Hospital. Parasite development to midgut oocysts and salivary gland sporozoites was assessed on days 7 and 14 post-feeding, respectively. The optimal conditions for mosquito rearing and feeding were evaluated to produce high-quality mosquitoes and to yield a high sporozoite rate, respectively. Results Laboratory-colonized mosquitoes could be starved for a shorter time before successful blood feeding compared with wild-caught mosquitoes. Optimizing the mosquito-rearing methods significantly increased mosquito survival. For mosquito feeding, replacing patient plasma with naïve serum increased sporozoite production > two-fold. With these changes, the sporozoite infection rate was high (> 85%) and resulted in an average of ~ 22,000 sporozoites per mosquito. Some mosquitoes reached up to 73,000 sporozoites. Sporozoite production could not be predicted from gametocyte density but could be predicted by measuring oocyst infection and oocyst load. Conclusions Optimized conditions for the production of high-quality P. vivax sporozoite-infected An. stephensi were established at a field site in South West India. This report describes techniques for producing a ready resource of P. vivax sporozoites. The improved protocols can help in future research on the biology of P. vivax liver stages, including hypnozoites, in India, as well as the development of anti-relapse interventions for vivax malaria.


PLoS ONE ◽  
2010 ◽  
Vol 5 (10) ◽  
pp. e13490 ◽  
Author(s):  
Kirsten E. Lyke ◽  
Matthew Laurens ◽  
Matthew Adams ◽  
Peter F. Billingsley ◽  
Adam Richman ◽  
...  

2020 ◽  
Vol 5 ◽  
pp. 136
Author(s):  
Tony I. Isebe ◽  
Joel L. Bargul ◽  
Bonface M. Gichuki ◽  
James M. Njunge ◽  
James Tuju ◽  
...  

Background: Plasmodium falciparum causes the deadliest form of malaria in humans. Upon infection, the host’s infected red blood cells (iRBCs) are remodelled by exported parasite proteins in order to provide a niche for parasite development and maturation. Methods: Here we analysed the role of three PHISTb proteins Pf3D7_0532400, Pf3D7_1401600, and Pf3D7_1102500 by expressing recombinant proteins and evaluated antibody responses against these proteins using immune sera from malaria-exposed individuals from Kenya and The Gambia in Africa. Results: Our findings show that children and adults from malaria-endemic regions recognized the three PHISTb proteins. Responses against the PHISTb proteins varied with malaria transmission intensity in three different geographical sites in Kenya (Siaya and Takaungu) and The Gambia (Sukuta). Antibody responses against PHISTb antigens Pf3D7_1102500 and Pf3D7_1401600 were higher in Sukuta, a low transmission region in the Gambia, as compared to Siaya, a high transmission region in western Kenya, unlike Pf3D7_0532400. Anti-PHIST responses show a negative correlation between antibody levels and malaria transmission intensity for two PHIST antigens, Pf3D7_1102500 and Pf3D7_1401600. However, we report a correlation in antibody responses between schizont extract and Pf3D7_0532400 (p=0.00582). Acquisition of anti-PHIST antibodies was correlated with exposure to malaria for PHISTb protein Pf3D7_0532400 (p=0.009) but not the other PHIST antigens Pf3D7_1102500 and Pf3D7_1401600 (p=0.507 and p=0.15, respectively, CI=95%). Children aged below 2 years had the lowest antibody levels, but the responses do not correlate with age differences. Conclusions: Collectively, these findings provide evidence of natural immunity against PHISTb antigens that varies with level of malaria exposure and underscore potential for these parasite antigens as possible serological markers to P. falciparum infection aimed at contributing to malaria control through vaccine development.


Sign in / Sign up

Export Citation Format

Share Document