DETERMINATION OF THE FREQUENCY RESPONSE FUNCTION OF A CANTILEVERED BEAM SIMPLY SUPPORTED IN-SPAN

2001 ◽  
Vol 247 (2) ◽  
pp. 372-378 ◽  
Author(s):  
M. GÜRGÖZE ◽  
H. EROL
2013 ◽  
Vol 405-408 ◽  
pp. 2006-2009
Author(s):  
Qing Qing Ma ◽  
Hong Ru Zhang

In order to simplify the analysis and calculation of multi-span simply supported girder bridge, the seismic frequency response function equation of longitudinal vibration for single-span simply supported girder bridge is established, based on the Fourier transform of the motion equations of multi-degree-of-freedom system. The calculation method of the seismic frequency response for the vertical moment and displacement of multi-span simply supported beam bridge is proposed according to the transfer matrix principle. Taking a bridge of Qinghai-Tibet Railway as an example, the maximum displacement and moment are solved. The result shows that: the displacement of the control section of the side spans is smaller than that of the middle of the bridge, while the moment is opposite. The corresponding Fourier amplitude spectrums under the pulse loads are given finally.


Author(s):  
Zoltán Gazdagh ◽  
Balázs Vehovszky

Frequency resolution is an essential parameter in acoustical testing, even if we are using numerical or experimental method, for example when determining frequency response function (FRF) of a dynamic mechanical system, or executing modal analysis based on the FRFs. Finer resolution leads to more accurate results, at the expense of longer calculation/measurement process and larger data size. This parameter is generally set based on rules of thumb, prior practice or with big margin for safety. This results in waste time and data storage if the required frequency resolution is overestimated, or even significant errors in the results, if it is underestimated. Present paper offers a direct, method for the conscious determination of optimal frequency resolution. It is based fully on theoretical considerations, and investigates amplitude and phase distortion at resonances as target parameters. Beside defining the steps of the process, it is tested on a real structure, and the results are presented as well, proving the applicability and the appropriateness of the method. With this method, development engineers get a practical tool for adjusting the parameters of dynamic measurements and simulations.


Sensors ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. 660 ◽  
Author(s):  
Alexandre Presas ◽  
David Valentin ◽  
Eduard Egusquiza ◽  
Carme Valero ◽  
Mònica Egusquiza ◽  
...  

Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 89
Author(s):  
Qingxia Zhang ◽  
Jilin Hou ◽  
Zhongdong Duan ◽  
Łukasz Jankowski ◽  
Xiaoyang Hu

Road roughness is an important factor in road network maintenance and ride quality. This paper proposes a road-roughness estimation method using the frequency response function (FRF) of a vehicle. First, based on the motion equation of the vehicle and the time shift property of the Fourier transform, the vehicle FRF with respect to the displacements of vehicle–road contact points, which describes the relationship between the measured response and road roughness, is deduced and simplified. The key to road roughness estimation is the vehicle FRF, which can be estimated directly using the measured response and the designed shape of the road based on the least-squares method. To eliminate the singular data in the estimated FRF, the shape function method was employed to improve the local curve of the FRF. Moreover, the road roughness can be estimated online by combining the estimated roughness in the overlapping time periods. Finally, a half-car model was used to numerically validate the proposed methods of road roughness estimation. Driving tests of a vehicle passing over a known-sized hump were designed to estimate the vehicle FRF, and the simulated vehicle accelerations were taken as the measured responses considering a 5% Gaussian white noise. Based on the directly estimated vehicle FRF and updated FRF, the road roughness estimation, which considers the influence of the sensors and quantity of measured data at different vehicle speeds, is discussed and compared. The results show that road roughness can be estimated using the proposed method with acceptable accuracy and robustness.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 144
Author(s):  
Yan Zhang ◽  
Jijian Lian ◽  
Songhui Li ◽  
Yanbing Zhao ◽  
Guoxin Zhang ◽  
...  

Ground vibrations induced by large flood discharge from a dam can damage surrounding buildings and impact the quality of life of local residents. If ground vibrations could be predicted during flood discharge, the ground vibration intensity could be mitigated by controlling or tuning the discharge conditions by, for example, changing the flow rate, changing the opening method of the orifice, and changing the upstream or downstream water level, thereby effectively preventing damage. This study proposes a prediction method with a modified frequency response function (FRF) and applies it to the in situ measured data of Xiangjiaba Dam. A multiple averaged power spectrum FRF (MP-FRF) is derived by analyzing four major factors when the FRF is used: noise, system nonlinearity, spectral leakages, and signal latency. The effects of the two types of vibration source as input are quantified. The impact of noise on the predicted amplitude is corrected based on the characteristics of the measured signal. The proposed method involves four steps: signal denoising, MP-FRF estimation, vibration prediction, and noise correction. The results show that when the vibration source and ground vibrations are broadband signals and two or more bands with relative high energies, the frequency distribution of ground vibration can be predicted with MP-FRF by filtering both the input and output. The amplitude prediction loss caused by filtering can be corrected by adding a constructed white noise signal to the prediction result. Compared with using the signal at multiple vibration sources after superimposed as input, using the main source as input improves the accuracy of the predicted frequency distribution. The proposed method can predict the dominant frequency and the frequency bands with relative high energies of the ground vibration downstream of Xiangjiaba Dam. The predicted amplitude error is 9.26%.


Sign in / Sign up

Export Citation Format

Share Document