scholarly journals Influence of frequency resolution in case of frequency response function measurement in structural dynamics

Author(s):  
Zoltán Gazdagh ◽  
Balázs Vehovszky

Frequency resolution is an essential parameter in acoustical testing, even if we are using numerical or experimental method, for example when determining frequency response function (FRF) of a dynamic mechanical system, or executing modal analysis based on the FRFs. Finer resolution leads to more accurate results, at the expense of longer calculation/measurement process and larger data size. This parameter is generally set based on rules of thumb, prior practice or with big margin for safety. This results in waste time and data storage if the required frequency resolution is overestimated, or even significant errors in the results, if it is underestimated. Present paper offers a direct, method for the conscious determination of optimal frequency resolution. It is based fully on theoretical considerations, and investigates amplitude and phase distortion at resonances as target parameters. Beside defining the steps of the process, it is tested on a real structure, and the results are presented as well, proving the applicability and the appropriateness of the method. With this method, development engineers get a practical tool for adjusting the parameters of dynamic measurements and simulations.

1986 ◽  
Vol 108 (4) ◽  
pp. 394-398 ◽  
Author(s):  
P. Cawley ◽  
L. G. Rigner

The use of a Nyquist plot of the H2 (Syy/Sxy*) frequency response function estimates produced by an FFT based spectrum analyzer with random excitation to obtain modal amplitudes and hence modal constants has been investigated. It has been proved that, irrespective of the frequency resolution used, the H2 estimates always lie on the true modal circle so even at coarse frequency resolution, a circle fitted to these points gives accurate values of modal amplitude. The conventional H1 (Sxy/Sxx) estimates lie inside the true modal circle. Use of the H2 technique results in major savings in the testing time required for a modal survey, particularly when measurements are to be taken at many points on the test structure.


1986 ◽  
Vol 108 (1) ◽  
pp. 44-49 ◽  
Author(s):  
P. Cawley

The accuracy of the frequency response measurement obtained using impact excitation and a Fast Fourier Transform based spectrum analyzer has been investigated. It has been shown that with impact excitation, provided the impacts are reproducible and the extraneous noise level is low, the coherence estimates obtained from the analyzer are unity, irrespective of the frequency resolution employed. Hence the H1 (Sxy/Sxx) and H2 (Syy/Sxy*) frequency response function estimates are identical. However, these frequency response function estimates are affected by a bias error caused by inadequate frequency resolution so unity coherence does not necessarily imply accurate results. The results with impact excitation are compared with those obtained using random excitation where both the coherence and frequency response function estimates are affected by bias error. The bias error in the frequency response function estimates with impact excitation is intermediate between that in the H1 and H2 estimates when random excitation is used. The theoretical predictions have been verified by tests on an analogue computer and on a built-up structure.


Sensors ◽  
2017 ◽  
Vol 17 (3) ◽  
pp. 660 ◽  
Author(s):  
Alexandre Presas ◽  
David Valentin ◽  
Eduard Egusquiza ◽  
Carme Valero ◽  
Mònica Egusquiza ◽  
...  

Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 89
Author(s):  
Qingxia Zhang ◽  
Jilin Hou ◽  
Zhongdong Duan ◽  
Łukasz Jankowski ◽  
Xiaoyang Hu

Road roughness is an important factor in road network maintenance and ride quality. This paper proposes a road-roughness estimation method using the frequency response function (FRF) of a vehicle. First, based on the motion equation of the vehicle and the time shift property of the Fourier transform, the vehicle FRF with respect to the displacements of vehicle–road contact points, which describes the relationship between the measured response and road roughness, is deduced and simplified. The key to road roughness estimation is the vehicle FRF, which can be estimated directly using the measured response and the designed shape of the road based on the least-squares method. To eliminate the singular data in the estimated FRF, the shape function method was employed to improve the local curve of the FRF. Moreover, the road roughness can be estimated online by combining the estimated roughness in the overlapping time periods. Finally, a half-car model was used to numerically validate the proposed methods of road roughness estimation. Driving tests of a vehicle passing over a known-sized hump were designed to estimate the vehicle FRF, and the simulated vehicle accelerations were taken as the measured responses considering a 5% Gaussian white noise. Based on the directly estimated vehicle FRF and updated FRF, the road roughness estimation, which considers the influence of the sensors and quantity of measured data at different vehicle speeds, is discussed and compared. The results show that road roughness can be estimated using the proposed method with acceptable accuracy and robustness.


Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 144
Author(s):  
Yan Zhang ◽  
Jijian Lian ◽  
Songhui Li ◽  
Yanbing Zhao ◽  
Guoxin Zhang ◽  
...  

Ground vibrations induced by large flood discharge from a dam can damage surrounding buildings and impact the quality of life of local residents. If ground vibrations could be predicted during flood discharge, the ground vibration intensity could be mitigated by controlling or tuning the discharge conditions by, for example, changing the flow rate, changing the opening method of the orifice, and changing the upstream or downstream water level, thereby effectively preventing damage. This study proposes a prediction method with a modified frequency response function (FRF) and applies it to the in situ measured data of Xiangjiaba Dam. A multiple averaged power spectrum FRF (MP-FRF) is derived by analyzing four major factors when the FRF is used: noise, system nonlinearity, spectral leakages, and signal latency. The effects of the two types of vibration source as input are quantified. The impact of noise on the predicted amplitude is corrected based on the characteristics of the measured signal. The proposed method involves four steps: signal denoising, MP-FRF estimation, vibration prediction, and noise correction. The results show that when the vibration source and ground vibrations are broadband signals and two or more bands with relative high energies, the frequency distribution of ground vibration can be predicted with MP-FRF by filtering both the input and output. The amplitude prediction loss caused by filtering can be corrected by adding a constructed white noise signal to the prediction result. Compared with using the signal at multiple vibration sources after superimposed as input, using the main source as input improves the accuracy of the predicted frequency distribution. The proposed method can predict the dominant frequency and the frequency bands with relative high energies of the ground vibration downstream of Xiangjiaba Dam. The predicted amplitude error is 9.26%.


2020 ◽  
Vol 36 (6) ◽  
pp. 867-879
Author(s):  
X. H. Liao ◽  
W. F. Wu ◽  
H. D. Meng ◽  
J. B. Zhao

ABSTRACTTo evaluate the dynamic properties of a coupled structure based on the dynamic properties of its substructures, this paper investigates the dynamic substructuring issue from the perspective of response prediction. The main idea is that the connecting forces at the interface of substructures can be expressed by the unknown coupled structural responses, and the responses can be solved rather easily. Not only rigidly coupled structures but also resiliently coupled structures are investigated. In order to further comprehend and visualize the nature of coupling problems, the Neumann series expansion for a matrix describing the relation between the coupled and uncoupled substructures is also introduced in this paper. Compared with existing response prediction methods, the proposed method does not have to measure any forces, which makes it easier to apply than the others. Clearly, the frequency response function matrix of coupled structures can be derived directly based on the response prediction method. Compared with existing frequency response function synthesis methods, it is more straightforward and comprehensible. Through demonstration of two examples, it is concluded that the proposed method can deal with structural coupling problems very well.


Sign in / Sign up

Export Citation Format

Share Document