Metabolic Engineering for Microbial Production of Aromatic Amino Acids and Derived Compounds

2001 ◽  
Vol 3 (4) ◽  
pp. 289-300 ◽  
Author(s):  
Johannes Bongaerts ◽  
Marco Krämer ◽  
Ulrike Müller ◽  
Leon Raeven ◽  
Marcel Wubbolts
2020 ◽  
Vol 57 ◽  
pp. 129-139 ◽  
Author(s):  
Laura Furelos Brey ◽  
Artur J. Włodarczyk ◽  
Jens F. Bang Thøfner ◽  
Meike Burow ◽  
Christoph Crocoll ◽  
...  

2019 ◽  
Author(s):  
A Craig ◽  
N Kolks ◽  
E Urusova ◽  
BD Zlatopolskiy ◽  
B Neumaier

2018 ◽  
Author(s):  
Golaleh Asghari ◽  
Emad Yuzbashian ◽  
Maryam Zarkesh ◽  
Parvin Mirmiran ◽  
Mehdi Hedayati ◽  
...  

2018 ◽  
Author(s):  
Nidhi Gour ◽  
Bharti Koshti ◽  
Chandra Kanth P. ◽  
Dhruvi Shah ◽  
Vivek Shinh Kshatriya ◽  
...  

We report for the very first time self-assembly of Cysteine and Methionine to discrenible strucutres under neutral condition. To get insights into the structure formation, thioflavin T and Congo red binding assays were done which revealed that aggregates may not have amyloid like characteristics. The nature of interactions which lead to such self-assemblies was purported by coincubating assemblies in urea and mercaptoethanol. Further interaction of aggregates with short amyloidogenic dipeptide diphenylalanine (FF) was assessed. While cysteine aggregates completely disrupted FF fibres, methionine albeit triggered fibrillation. The cytotoxicity assays of cysteine and methionine structures were performed on Human Neuroblastoma IMR-32 cells which suggested that aggregates are not cytotoxic in nature and thus, may not have amyloid like etiology. The results presented in the manuscript are striking, since to the best of our knowledge,this is the first report which demonstrates that even non-aromatic amino acids (cysteine and methionine) can undergo spontaneous self-assembly to form ordered aggregates.


1983 ◽  
Vol 245 (4) ◽  
pp. R556-R563 ◽  
Author(s):  
J. K. Tews ◽  
A. E. Harper

Transport of histidine, valine, or lysine into rat brain slices and across the blood-brain barrier (BBB) was determined in the presence of atypical nonprotein amino acids. Competitors of histidine and valine transport in slices were large neutral amino acids including norleucine, norvaline, alpha-aminooctanoate, beta-methylphenylalanine, and alpha-aminophenylacetate. Less effective were aromatic amino acids with ring substituents; ineffective were basic amino acids and omega-amino isomers of norleucine and aminooctanoate. Lysine transport was moderately depressed by homoarginine or ornithine plus arginine; large neutral amino acids were also similarly inhibitory. Histidine or valine transport across the BBB was also strongly inhibited by large neutral amino acids that were the most effective competitors in the slices (norvaline, norleucine, alpha-aminooctanoate, and alpha-aminophenylacetate); homoarginine and 8-aminooctanoate were ineffective. Homoarginine, ornithine, and arginine almost completely blocked lysine transport, but the large neutral amino acids were barely inhibitory. When rats were fed a single meal containing individual atypical large neutral amino acids or homoarginine, brain pools of certain large neutral amino acids or of arginine and lysine, respectively, were depleted.


Sign in / Sign up

Export Citation Format

Share Document