Relationship between Cell Cycle Changes and Variations of the Mitochondrial Membrane Potential Induced by Etoposide

2000 ◽  
Vol 4 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Michael Facompré ◽  
Nicole Wattez ◽  
Jérôme Kluza ◽  
Amélie Lansiaux ◽  
Christian Bailly
2019 ◽  
Vol 18 (9) ◽  
pp. 1313-1322 ◽  
Author(s):  
Manjula Devi Ramamoorthy ◽  
Ashok Kumar ◽  
Mahesh Ayyavu ◽  
Kannan Narayanan Dhiraviam

Background: Reserpine, an indole alkaloid commonly used for hypertension, is found in the roots of Rauwolfia serpentina. Although the root extract has been used for the treatment of cancer, the molecular mechanism of its anti-cancer activity on hormonal independent prostate cancer remains elusive. Methods: we evaluated the cytotoxicity of reserpine and other indole alkaloids, yohimbine and ajmaline on Prostate Cancer cells (PC3) using MTT assay. We investigated the mechanism of apoptosis using a combination of techniques including acridine orange/ethidium bromide staining, high content imaging of Annexin V-FITC staining, flow cytometric quantification of the mitochondrial membrane potential and Reactive Oxygen Species (ROS) and cell cycle analysis. Results: Our results indicate that reserpine inhibits DNA synthesis by arresting the cells at the G2 phase and showed all standard sequential features of apoptosis including, destabilization of mitochondrial membrane potential, reduced production of reactive oxygen species and DNA ladder formation. Our in silico analysis further confirmed that indeed reserpine docks to the catalytic cleft of anti-apoptotic proteins substantiating our results. Conclusion: Collectively, our findings suggest that reserpine can be a novel therapeutic agent for the treatment of androgen-independent prostate cancer.


2019 ◽  
Vol 19 (4) ◽  
pp. 557-566 ◽  
Author(s):  
Nerella S. Goud ◽  
Mahammad S. Ghouse ◽  
Jatoth Vishnu ◽  
Jakkula Pranay ◽  
Ravi Alvala ◽  
...  

Background: Human Galectin-1, a protein of lectin family showing affinity towards β-galactosides has emerged as a critical regulator of tumor progression and metastasis, by modulating diverse biological events including homotypic cell aggregation, migration, apoptosis, angiogenesis and immune escape. Therefore, galectin-1 inhibitors might represent novel therapeutic agents for cancer. Methods: A new series of heterocyclic imines linked coumarin-thiazole hybrids (6a-6r) was synthesized and evaluated for its cytotoxic potential against a panel of six human cancer cell lines namely, lung (A549), prostate (DU-145), breast (MCF-7 & MDA-MB-231), colon (HCT-15 & HT-29) using MTT assay. Characteristic apoptotic assays like DAPI staining, cell cycle, annexin V and Mitochondrial membrane potential studies were performed for the most active compound. Furthermore, Gal-1 inhibition was confirmed by ELISA and fluorescence spectroscopy. Results: Among all, compound 6g 3-(2-(2-(pyridin-2-ylmethylene) hydrazineyl) thiazol-4-yl)-2H-chromen-2- one exhibited promising growth inhibition against HCT-15 colorectal cancer cells with an IC50 value of 1.28 ± 0.14 µM. The characteristic apoptotic morphological features like chromatin condensation, membrane blebbing and apoptotic body formation were clearly observed with compound 6g on HCT-15 cells using DAPI staining studies. Further, annexin V-FITC/PI assay confirmed effective early apoptosis induction by treatment with compound 6g. Loss of mitochondrial membrane potential and enhanced ROS generation were confirmed with JC-1 and DCFDA staining method, respectively by treatment with compound 6g, suggesting a possible mechanism for inducing apoptosis. Moreover, flow cytometric analysis revealed that compound 6g blocked G0/G1 phase of the cell cycle in a dose-dependent manner. Compound 6g effectively reduced the levels of Gal-1 protein in a dose-dependent manner. The binding constant (Ka) of 6g with Gal-1 was calculated from the intercept value which was observed as 1.9 x 107 M-1 by Fluorescence spectroscopy. Molecular docking studies showed strong interactions of compound 6g with Gal-1 protein. Conclusion: Our studies demonstrate the anticancer potential and Gal-1 inhibition of heterocyclic imines linked coumarin-thiazole hybrids.


2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Manman Gu ◽  
Jing Xu ◽  
Chunyang Han ◽  
Youxi Kang ◽  
Tengfei Liu ◽  
...  

Berberine, an isoquinoline alkaloid isolated from several traditional Chinese herbal medicines (TCM), exhibits a strong antimicrobial activity in the treatment of diarrhea. However, it causes human as well as animal toxicity from heavy dosage. The present study was conducted to investigate the cytotoxicity of berberine and its possible trigger mechanisms resulting in cell cycle arrest, DNA damage, ROS (reactive oxygen species) level, mitochondrial membrane potential change, and cell apoptosis in L929 murine fibroblast (L929) cells. The cells were culturedin vitroand treated with different concentrations of berberine for 24 h. The results showed that cell viability was significantly decreased in a subjected dose-dependent state; berberine concentrations were higher than 0.05 mg/mL. Berberine at a concentration above 0.1 mg/mL altered the morphology of L929 cells. Cells at G2/M phase were clear that the level of ROS and cell apoptosis rates increased in 0.1 mg/mL group. Each DNA damage indicator score (DIS) increased in groups where concentration of berberine was above 0.025 mg/mL. The mitochondrial membrane potential counteractive balance mechanics were significantly altered when concentrations of berberine were above 0.005 mg/mL. In all, the present study suggested that berberine at high dosage exhibited cytotoxicity on L929 which was related to resultant: cell cycle arrest; DNA damage; accumulation of intracellular ROS; reduction of mitochondrial membrane potential; and cell apoptosis.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5138-5138
Author(s):  
Juan J Gu ◽  
Lianjuan Yang ◽  
Cory Mavis ◽  
Matthew J. Barth ◽  
Francisco J. Hernandez-Ilizaliturri

Abstract Background: Relapsed/refractory diffuse large B-cell lymphoma (DLBCL) patients previously treated with rituximab-based therapy have poor clinical outcome, according to the results from collaborative trial in relapsed aggressive lymphoma (CORAL) study. It stresses the need to identify and/or optimize novel targeted agents. To better understand the molecular mechanisms underlining the acquired resistance to rituximab, we generated and characterized several rituximab-resistant DLBCL cell lines (RRCLs). Itraconazole, an oral antifungal agent, was reported had novel anticancer activity in basal cell carcinoma, non-small cell lung cancer and prostate cancer. In our current work, we define and characterize the anticancer activity of itraconazole in preclinical rituximab-sensitive or -resistant lymphoma models. Methods: A panel of rituximab-sensitive (RSCL) and rituximab-resistant (RRCL) cell lines were exposed to escalating doses of itraconazole (0-20μM) for 24, 48 and 72h. Changes in cell viability and cell cycle distribution were evaluated using the Presto Blue assay and flow cytometry respectively. IC50 was calculated by Graphpad Prism6 software. Loss of mitochondrial membrane potential (∆ψm) following itraconazole exposure was assessed by DiOC6 and flow cytometry. Subsequently lymphoma cells were exposed to itraconazole or vehicle and various chemotherapy agents such as doxorubicin (1µM), dexamethasone (1µM), cDDP (20μg/ml), bortezomib (20nM), carfilzomib (20nM) or MLN2238 (20nM) for 48 hours. Coefficient of synergy was calculated using the CalcuSyn software. Changes in hexokinase II (HKII), Voltage dependent anion channel protein (VDAC), LC3 and BCL-xL expression levels were determined by western blotting after exposure cells to itraconazole. VDAC-HKII interactions following in vitro exposure to itraconazole were determined by immunoprecipitation of VDAC and probing for HKII in RSCL and RRCLs. Result:Itraconazole consistently showed potent, specific, dose-and time- dependent inhibition of all our sensitive and resistant lymphoma cell lines. In vitro exposure cells to itraconazole resulted in a loss of mitochondrial membrane potential and caused G2 cell cycle arrest. Itraconazole significantly had a synergistic anti-tumor effect combined with various chemotherapeutic agents, including doxorubicin, dexamethasone, cisplatin and different generations of proteasome inhibitors (bortezomib, carfilzomib or ixazomib) in both RSCL and RRCL. Western blot and immunoprecipitation studies demonstrated that following exposure to itraconazole, HKII bound less to mitochondrial specific protein VDAC. Complete silencing of HKII (using HKII siRNA interference) resulted in a rescue of loss in the mitochondrial membrane potential induced by intraconazole. Conclusion: Taking together, our data suggest that itraconazole had a potent anti-tumor activity against rituximab-sensitive or resistant pre-clinical models. The disruption of HKII from mitochondria following itraconazole exposure may contribute to lower the mitochondrial membrane potential and enhance the chemotherapeutic efficacy. Our finding highlights itraconazole as a potential therapeutic agent in the treatment of B-cell malignancies, and strongly supports clinical translation of its use. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Vol 20 (5) ◽  
pp. 599-611
Author(s):  
Thoukhir B. Shaik ◽  
M. Shaheer Malik ◽  
Sunitha R. Routhu ◽  
Zaki S. Seddigi ◽  
Ismail I. Althagafi ◽  
...  

Background: Cancer is one of the major health and social-economic problems despite considerable progress in its early diagnosis and treatment. Owing to the emergence and increase of multidrug resistance to various conventional drugs, and the continuing importance of health-care expenditure, many researchers have focused on developing novel and effective anticancer compounds. Objective: Chemical repositories provide a good platform to evaluate and exploit known chemical entities for the identification of other biological activities. In the present study, we have selected an in-house library of synthesized compounds based on two different pharmacophoric scaffolds to evaluate their cytotoxic potency on various cancer cell lines and mechanisms of action. Methods: A series of in-house synthesized quinazoline and quinazolino-benzothiadiazine derivatives were investigated for their anticancer efficacy against a panel of five cancer (DU145, MCF7, HepG2, SKOV3 and MDA-MB-231) and one normal (MRC5) cell lines. Furthermore, the active compound of the study was investigated to elucidate the mechanism of cytotoxicity by performing series of experiments such as cell cycle analysis, inhibition of tubulin polymerization, alteration of mitochondrial membrane potential, determination of endocytic pathway for drug uptake pathway and combination drug treatment. Results: Among all the tested compounds, fifteen of them exhibited promising growth-inhibitory effect (0.15- 5.0μM) and induced cell cycle arrest in the G2/M phase. In addition, the selected compounds inhibited the microtubule assembly; altered mitochondrial membrane potential and enhanced the levels of caspase-9 in MCF-7 cells. Furthermore, the active compound with a combination of drugs showed a synergistic effect at lower concentrations, and the drug uptake was mediated through clathrin-mediated endocytic pathway. Conclusion: Our results indicated that quinazoline and quinazolino-benzothiadiazine conjugates could serve as potential leads in the development of new anticancer agents.


2003 ◽  
Vol 98 (5) ◽  
pp. 1178-1185 ◽  
Author(s):  
Ruei-Ming Chen ◽  
Chih-Hsiung Wu ◽  
Huai-Chia Chang ◽  
Gong-Jhe Wu ◽  
Yi-Ling Lin ◽  
...  

Background Propofol is an intravenous anesthetic agent that may impair host defense system. The aim of this study was to evaluate the effects of propofol on macrophage functions and its possible mechanism. Methods Mouse macrophage-like Raw 264.7 cells were exposed to propofol, at 3, 30 (a clinically relevant concentration), and 300 microm. Cell viability, lactate dehydrogenase, and cell cycle were analyzed to determine the cellular toxicity of propofol to macrophages. After administration of propofol, chemotactic, phagocytic, and oxidative ability and interferon-gamma mRNA production were carried out to validate the potential effects of propofol on macrophage functions. Mitochondrial membrane potential and cellular adenosine triphosphate levels were also analyzed to evaluate the role of mitochondria in propofol-induced macrophage dysfunction. Results Exposure of macrophages to 3 and 30 microm propofol did not affect cell viability. When the administered concentration reached 300 microm, propofol would increase lactate dehydrogenase release, cause arrest of cell cycle in G1/S phase, and lead to cell death. In the 1-h-treated macrophages, propofol significantly reduced macrophage functions of chemotactic and oxidative ability in a concentration-dependent manner. However, the suppressive effects were partially or completely reversed after 6 and 24 h. Propofol could reduce phagocytic activities of macrophages in concentration- and time-dependent manners. Exposure of macrophages to lipopolysaccharide induced the mRNA of interferon-gamma, but the induction was significantly blocked by propofol. Propofol concentration-dependently decreased the membrane potential of macrophage mitochondria, but the effects were descended with time. The levels of cellular adenosine triphosphate in macrophages were also reduced by propofol. Conclusions A clinically relevant concentration of propofol can suppress macrophage functions, possibly through inhibiting their mitochondrial membrane potential and adenosine triphosphate synthesis instead of direct cellular toxicity.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 1452-1452
Author(s):  
Andrew A.G. Aprikyan ◽  
Nara A. Markosyan

Abstract Severe congenital neutropenia (SCN) is an inheritable hematopoietic disorder characterized by extremely low level of circulating neutrophils, ineffective intramedulary hematopoiesis with “maturation arrest” at the promyelocytic stage of differentiation, recurrent severe infections, and evolution to acute myelogenous leukemia (AML). Accelerated apoptosis of bone marrow-derived myeloid progenitor cells and cell cycle arrest of CD34+ cells was reported in SCN patients. We also reported that heterozygous mutations in the neutrophil elastase (NE) gene have been identified in approximately 80% of SCN patients. Transient expression of mutant but not normal NE triggered accelerated apoptotic cell death of human promyelocytic HL-60 cells supporting the causative role of mutant NE in pathogenesis of SCN. Here we present cellular model of SCN based on newly established tet-off HL-60 human promyelocytic cell line with inducible doxycycline-regulated expression of mutant NE with 8-amino acid deletion identified in a patient evolved to develop AML. Induced expression of mutant elastase in tet-off HL-60 cells treated with DMSO led to a block of differentiation or “maturation arrest” at the promyelocytic stage of differentiation with a significantly reduced proportion of differentiated cells (approximately 20% vs 70% in control) and higher proportion (~40%) of primitive undifferentiated cells compared with control DMSO-treated HL-60 cells expressing only normal NE (~10%). Flow cytometry analysis of annexin V-labeled cells repeatedly revealed approximately 2-fold higher rate of apoptosis in tet-off HL-60 cells with induced expression of mutant NE compared with control cells. FACS analysis of DAPI-labeled tet-off HL-60 cells with induced expression of mutant NE revealed abnormal cell cycle progression with gradual accumulation and apparent arrest of cells in G1-phase of the cell cycle similar to that reported for SCN patients. Interestingly, the apoptotic cell shrinking and swelling as determined by flow cytometry was observed in all phases of the cell cycle suggesting that accelerated apoptosis rather than cell cycle arrest is the primary abnormality caused by expression of mutant NE, and the abnormal cell cycle progression is a consequence of this impaired cell survival. Further analysis revealed a dramatic reduction in mitochondrial membrane potential of tet-off HL-60 cells expressing mutant NE compared with control cells. The reduced mitochondrial membrane potential as determined by FACS was observed as early as 24 hours of induction of mutant NE expression and before the accelerated apoptosis or cell cycle arrest was detected. Western blot analysis demonstrated that caspase-3 was not activated in the cells even after 3 days of mutant NE induction. Further analysis of apoptosis regulators revealed a down-regulation of Bcl-2 expression and up-regulation of Bax in cells with induced expression of mutant elastase. These data suggest that mutant elastase-mediated “maturation arrest” of human promyelocytic cells in patients with SCN and SCN/AML is associated with reduced expression of anti-apoptotic Bcl-2 and upregulation of pro-apoptotic Bax proteins that trigger a dramatic reduction in mitochondrial membrane potential and subsequent caspase-independent apoptosis and cell cycle arrest. Current studies focused on elucidating and characterizing specific molecular interactions mediating the pro-apoptotic effect of mutant neutrophil elastase in SCN.


Sign in / Sign up

Export Citation Format

Share Document