THE ITD MODE-SHAPE COHERENCE AND CONFIDENCE FACTOR AND ITS APPLICATION TO SEPARATING EIGENVALUE POSITIONS IN THEZ -PLANE

2000 ◽  
Vol 14 (2) ◽  
pp. 167-180 ◽  
Author(s):  
Y. GAO ◽  
R.B. RANDALL
Keyword(s):  
Author(s):  
Izabela Batista da Silva ◽  
Paulo Costa Porto de Figueiredo Barbosa ◽  
Aldemir Ap Cavalini Jr ◽  
Valder Steffen Jr ◽  
Nicolò Bachschmid

2021 ◽  
Vol 11 (10) ◽  
pp. 4589
Author(s):  
Ivan Duvnjak ◽  
Domagoj Damjanović ◽  
Marko Bartolac ◽  
Ana Skender

The main principle of vibration-based damage detection in structures is to interpret the changes in dynamic properties of the structure as indicators of damage. In this study, the mode shape damage index (MSDI) method was used to identify discrete damages in plate-like structures. This damage index is based on the difference between modified modal displacements in the undamaged and damaged state of the structure. In order to assess the advantages and limitations of the proposed algorithm, we performed experimental modal analysis on a reinforced concrete (RC) plate under 10 different damage cases. The MSDI values were calculated through considering single and/or multiple damage locations, different levels of damage, and boundary conditions. The experimental results confirmed that the MSDI method can be used to detect the existence of damage, identify single and/or multiple damage locations, and estimate damage severity in the case of single discrete damage.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7067
Author(s):  
Jia-Hao He ◽  
Ding-Peng Liu ◽  
Cheng-Hsien Chung ◽  
Hsin-Haou Huang

In this study, infrared thermography is used for vibration-based structural health monitoring (SHM). Heat sources are employed as sensors. An acrylic frame structure was experimentally investigated using the heat sources as structural marker points to record the vibration response. The effectiveness of the infrared thermography measurement system was verified by comparing the results obtained using an infrared thermal imager with those obtained using accelerometers. The average error in natural frequency was between only 0.64% and 3.84%. To guarantee the applicability of the system, this study employed the mode shape curvature method to locate damage on a structure under harsh environments, for instance, in dark, hindered, and hazy conditions. Moreover, we propose the mode shape recombination method (MSRM) to realize large-scale structural measurement. The partial mode shapes of the 3D frame structure are combined using the MSRM to obtain the entire mode shape with a satisfactory model assurance criterion. Experimental results confirmed the feasibility of using heat sources as sensors and indicated that the proposed methods are suitable for overcoming the numerous inherent limitations associated with SHM in harsh or remote environments as well as the limitations associated with the SHM of large-scale structures.


1993 ◽  
Vol 115 (4) ◽  
pp. 427-435 ◽  
Author(s):  
K. Gupta ◽  
K. D. Gupta ◽  
K. Athre

A dual rotor rig is developed and is briefly discussed. The rig is capable of simulating dynamically the two spool aeroengine, though it does not physically resemble the actual aeroengine configuration. Critical speeds, mode shape, and unbalance response are determined experimentally. An extended transfer matrix procedure in complex variables is developed for obtaining unbalance response of dual rotor system. Experimental results obtained are compared with theoretical results and are found to be in reasonable agreement.


2017 ◽  
Vol 14 (7) ◽  
pp. 1327-1344 ◽  
Author(s):  
Tran Van Lien ◽  
Ngo Trong Đuc ◽  
Nguyen Tien Khiem

Sign in / Sign up

Export Citation Format

Share Document