Late Pleistocene Eolian Sediments Related to Pyroclastic Eruptions of Mauna Kea Volcano, Hawaii

1997 ◽  
Vol 47 (3) ◽  
pp. 261-276 ◽  
Author(s):  
Stephen C. Porter

Loess and dune sands that mantle volcanic rocks on the northwest flank of Mauna Kea volcano consist predominantly of fine-grained pyroclasts of the alkalic Laupahoehoe Volcanics produced by explosive eruptions. The loess is divided into lower and upper units, separated by a well-developed paleosol, while older and younger dune sands are separated by loess. Four interstratified tephra marker horizons aid in regional stratigraphic correlation. Radiocarbon ages of charcoal fragments within the loess, U-series ages of rhizoliths in the dune sand, and K/Ar ages and relative stratigraphic positions of lava flows provide a stratigraphic and temporal framework. The lower loess overlies lava flows less than 103,000 ± 10,000 K/Ar yr old, and14C dates from the paleosol developed at its top average ca. 48,000 yr. Loess separating the dune sand units ranges from ca. 38,000 to 25,00014C yr old; the youngest ages from the upper loess are 17,000–18,00014C yr B.P. Dips of sand-dune foreset strata, isopachs on the upper loess, and reconstructed isopachs representing cumulative thickness of tephra associated with late-Pleistocene pyroclastic eruptions suggest that vents upslope (upwind) from the sand dunes were the primary source of the eolian sediments. Average paleowind directions during the eruptive interval (ca. 50,000–15,000 yr B.P.), inferred from cinder-cone asymmetry, distribution of tephra units, orientation of dune foreset strata, and the regional pattern of loess isopachs, suggest that Mauna Kea has remained within the trade-wind belt since before the last glaciation.

2001 ◽  
Vol 2 (2) ◽  
pp. 95 ◽  
Author(s):  
B. ALPAR

The Enez-Evros Delta, NE Aegean Sea, is located in one the most important wetlands in the world with its sandy offshore islands, abandoned channel mouths, sand-dunes, shoals, marshlands, saline lagoons and saltpans. It comprises very well developed sedimentary units and a prodelta lying on an older submarine delta. The present day elevations of the middle-late Pleistocene marine terraces indicate a regional tectonic uplift in the area. Due to lack of geophysical and bore hole data and partly due to its strategic position, the structural and stratigraphic features of the submarine extension of the delta are not known in detail. In this paper, Plio-Quaternary history of this delta and its submarine part on the Turkish shelf was explored by using high-resolution shallow reflection seismic profiles. The delta is formed by the alluvial deposits of the Enez-Evros River and shaped by their interaction with the sea. It takes place in front of a large and protected ancient bay which was filled rapidly over millennia. The sediments in the plateau off the river are principally pro-deltaic with muddy areas near the river mouths changing to muddy sand further out. The sea-level changes in Plio-Quaternary were characterised by three different seismic stratigraphic units on the folded Miocene limestone basement. In the late Pleistocene, the shelf area over an Upper Miocene basement was flooded during the Riss-Würm interglacial period, exposed in the Würm glacial stage, and flooded once again during the Holocene transgression.


Geomorphology ◽  
2015 ◽  
Vol 246 ◽  
pp. 290-304 ◽  
Author(s):  
Dominik Faust ◽  
Yurena Yanes ◽  
Tobias Willkommen ◽  
Christopher Roettig ◽  
Daniel Richter ◽  
...  

1985 ◽  
Vol 24 (1) ◽  
pp. 115-120 ◽  
Author(s):  
H. E. Wright ◽  
J. C. Almendinger ◽  
J. Grüger

Radiocarbon dates of organic alluvium beneath as much as 40 m of dune sand along the Dismal River have led to the suggestion that the Nebraska Sandhills date from the Holocene rather than the last glacial period. On the other hand, the basal layers of lake and marsh deposits in interdune depressions at three localities date in the range of 9000 to 12,000 yr B.P., implying a pre-Holocene age for the sand dunes. A pollen diagram for one of these sites, Swan Lake, indicates prairie vegetation throughout the last 9000 yr, with no suggestion that the landscape was barren enough to permit the shaping of the massive dunes characterizing the area. Sand was not transported across the site during the Holocene, either during the marsh phase, which lasted until 3700 yr B.P., or during the subsequent lake phase. The sand that buries the alluvium along the Dismal River may represent only local eolian activity, or it may indicate that the younger of the two main dune series identified by H. T. U. Smith (1965, Journal of Geology 73, 557–578) is Holocene in age, and the older one Late Wisconsin in age.


2000 ◽  
Vol 53 (1) ◽  
pp. 70-77 ◽  
Author(s):  
Stephen C. Porter

AbstractGrayscale intensity profiles from photographic images offer a rapid means of obtaining paleoclimate proxy records from Chinese loess, dune sand, and paleosols. Although the data can be obtained using conventional 35-mm film images, a digital camera and laptop computer will produce a high-resolution grayscale profile at a field site within minutes. Comparison of grayscale profiles with profiles of magnetic susceptibility measured down loess and dune-sand sections at sites on the Loess Plateau and Tibetan Plateau in a range of altitudes and climatic regimes shows that the two parameters are highly correlated. Therefore, grayscale intensity is a convenient alternative to magnetic susceptibility for generating paleoclimatic data in the loess and desert-margin regions of China. The resolution of both grayscale and susceptibility profiles ultimately is limited by bioturbation, which is most pronounced in paleosols.


2016 ◽  
Vol 20 (2) ◽  
pp. 1 ◽  
Author(s):  
Mohammed Y. Fattah ◽  
Hasan H. Joni ◽  
Ahmed S. A. Al-Dulaimy

The purpose of this research is to assess the suitability of dune sands as construction materials. Moreover, such a goal is considered beneficial in determining appropriate methods for soil stabilization or ground improvement and to assessing the suitability of dune sands as subgrade layer for carrying roads and rail foundation. Dune sand samples were collected from a region in Baiji area in Salah-Aldeen governorate, North of Iraq. A grey-colored densified silica fume (SF) and lime (L) are used. Three percentages are used for lime (3%, 6%, and 9%), and four rates are used for silica fume (3%, 6%, 9% and 12%) and the maximum percentage of silica fume is mixed with the proportions of lime. Unsoaked California Bearing Ratio (CBR) on compacted dune sands treated dune sands with L-SF by mixing and cured for one day. The increasing in CBR ranged between 443 – 707% at 2.54 mm penetration and 345 – 410% at 5.08 mm penetration.   ResumenEl propósito de esta investigación es evaluar el uso de arena de dunas como materiales de construcción. Además, este objetivo permite determinar los métodos apropiados para la estabilización del suelo, el mejoramiento del terreno y la evaluación de pertinencia de la arena de dunas en capas subbase para carreteras y cimientos férreos. Se recolectaron muestras de arena de dunas en el área de Baiji, del comisionado Salah-Aldeen, al norte de Irak. Se utilizó vapor de óxido de silicio (SF, en inglés), grisáceo y densificado, y óxido de calcio (L). Se utilizaron tres porcentajes para el óxido de calcio (3 %, 6 % y 9 %), y cuatro para el óxido de silicio (3 %, 6 %,  9% y 12%) y el máximo porcentaje del óxido de silicio se mezcló con las proporciones de óxido de calcio. Se realizó en seco el Ensayo de Relación de Soporte de California (del inglés California Bearing Ratio, CBR) en arena de dunas compactada y tratada con la mezcla L-SF curada durante un día. El incremento en el ensayo CBR osciló entre 443-707 % en la penetración de 2.5 mm y 345-410 % en la penetración de 5.08 mm.


1998 ◽  
Vol 27 ◽  
pp. 697-703 ◽  
Author(s):  
M. Frignani ◽  
F. Giglio ◽  
L. Langone ◽  
M. Ravaioli ◽  
A. Mangini

Eight sediment gravity cores, collected from the joides and Drygalski basins, were analysed in order to understand late Pleistocene-Holocene biogenic flux changes in the Ross Sea, driven by paleoenvironmental changes. Core lithologies and magnetic-susceptibility depth profiles were used for core logging and stratigraphic correlation. Nineteen AMS radiocarbon dates of bulk organic matter were used to set chronological constraints and calculate sediment accumulation rates. These rates, which vary from 1.4-38 cm ka−1. were used to obtain the burial fluxes of biogenic components. The highest fluxes occur in the deepest parts of the basins (TOC, 0.05-0.2 g cm−2ka−1; biogenic silica, 1.5-5 g cm−1ka−1), where as topographic highs show the lowest values (TOC, 0.01-0.1 g cm−2ka−1; biogenic silica, 0.1-1.4 g cm−2ka−1). Dramatic changes in both physical properties and fluxes record the establishment of open marine-sedimentation conditions which occurred first in the joides basin and then, with a delay of ca. 6000 years, in the Drygalski basin. Both TOC and biogenic-silica fluxes increase through the Holocene, though slightly differently. The high fluxes of both10Be and biogenic Ba suggest that sediment accumulation at basin sites is strongly influenced by lateral transport.


2008 ◽  
Vol 70 (2) ◽  
pp. 275-282 ◽  
Author(s):  
Onn Crouvi ◽  
Rivka Amit ◽  
Yehouda Enzel ◽  
Naomi Porat ◽  
Amir Sandler

AbstractGrain size analyses of three hilltop, primary eolian loess sequences in the Negev desert, southern Israel, show a bimodal grain-size distribution at 50–60 μm and 3–8 μm. Using analyses of mineralogy and OSL ages we demonstrate that the coarse mode is composed mostly of quartz grains and its relative magnitude increases regionally with time, suggesting an enhancement of a time-transgressive proximal dust source compared to a distal, Saharan fine-grain dust. The only proximal dust source for large amount of coarse silt quartz grains is the sands that advanced into Sinai and the Negev concurrently with the loess accretion during the late Pleistocene as a result of the exposure of the Mediterranean shelf. We therefore propose that the coarse silt quartz grains were formed through eolian abrasion within the margins of an advancing sand sea. This relationship between desert sand seas as a source for proximal coarse dust and desert margin loess deposits can be applicable to other worldwide deserts such as Northern Africa, China and Australia.


Geology ◽  
2021 ◽  
Author(s):  
David R. Gaylord ◽  
Tammy M. Rittenour ◽  
Paul K. Link ◽  
Brent D. Turrin ◽  
Mel A. Kuntz

Ghost-dune hollows on the eastern Snake River Plain (ESRP), Idaho, USA, are topographically inverted, crescent-shaped depressions that record the partial encasement of sand dunes by ca. 61 ka basalt lava flows. Deflation of these “ghost” sand dunes produced approximately two dozen, 5–10-m-deep ghost-dune hollows now incompletely filled with pedogenically altered eolian and colluvial sediment. Optically stimulated luminescence (OSL) and 40Ar/39Ar ages constrain a ghost-dune hollow model that illuminates the late Pleistocene to Holocene environmental and climate history of the ESRP. Detrital zircon analyses indicate sand-dune supply routes changed following the burial of Pleistocene Henrys Fork (tributary of the Snake River) alluvium by ca. 70 ka basalt flows. Removal of Henrys Fork alluvium from the eolian supply system made Lake Terreton sediment the primary source for later ESRP sand dunes. Such sediment supply changes highlight the potential impacts of effusive volcanism on sand-dune histories and landscapes. Our results support stratigraphic and sedimentary modeling of comparable ghost-dune “pit” deposits older than ca. 2 Ga on Mars that may have served as refugia for early life on that planet. Analogous ancient ghost-dune hollow deposits on Earth may also have served as early life refugia.


Oxygen isotope measurements have been made in foraminifera from over 60 deep-sea sediment cores. Taken together with the oxygen isotope measurements published by Emiliani from Caribbean and Equatorial Atlantic cores, this comprises a unique body of stratigraphic data covering most of the important areas of calcareous sediment over the whole world ocean. The oxygen isotopic composition of foraminifera from cores of Late Pleistocene sediment varies in a similar manner in nearly all areas; the variations reflect changes in the oxygen isotopic composition of the ocean. The oceans are mixed in about 1 ka so that ocean isotopic changes, resulting from fluctuations in the quantity of ice stored on the continents, must have occurred almost synchronously in all regions. Thus the oxygen isotope record provides an excellent means of stratigraphic correlation. Cores accumulated at rates of over about 5 cm/ka provide records of oxygen isotopic composition change that are almost unaffected by post-depositional mixing of the sediment. Thus they preserve a detailed record of the advance and retreat of the ice masses in the northern hemisphere, and provide a unique source of information for the study of ice-sheet dynamics.


Sign in / Sign up

Export Citation Format

Share Document