Origin and development of the γδ T-cell system in sheep: a critical role for the thymus in the generation of TcR diversity and tissue tropism

1996 ◽  
Vol 8 (6) ◽  
pp. 351-360 ◽  
Author(s):  
R Cahill
2021 ◽  
Vol 13 (577) ◽  
pp. eabb0192
Author(s):  
Emelie Foord ◽  
Lucas C. M. Arruda ◽  
Ahmed Gaballa ◽  
Charlotte Klynning ◽  
Michael Uhlin

The role of γδ T cells in antitumor immunity has been under investigation for the past two decades, but little is known about their contribution to clinical outcomes in patients. Here, we set out to define the clonotypic, phenotypic, and functional features of γδ T cells in peripheral blood, ascites, and metastatic tumor tissue from patients with advanced epithelial ovarian cancer. T cell receptor (TCR) sequencing of the γ chain revealed that tumor-infiltrating γδ T cells have a unique and skewed repertoire with high TCR diversity and low clonality. In contrast, ascites-derived γδ T cells presented a lower TCR diversity and higher clonality, suggesting a TCR-dependent clonal focusing at this site. Further investigation showed that tumor samples had abundant γδ T cells with a tissue-resident, activation-associated phenotype, less usage of Vγ9 and an impaired response to adaptive-associated stimuli, implying an innate-like activation pathway, rather than an adaptive TCR-engaging pathway, at these tumor sites. Furthermore, high γδ T cell cytokine responsiveness upon stimulation was associated with a favorable outcome for patients in terms of both overall survival and reduced residual tumor burden after primary surgery. Last, the functionality of γδ T cells and patient survival were negatively affected by the proportions of CD39-expressing T cells, highlighting the potential of CD39 as a target to improve γδ T cell responses and unleash their antitumor capabilities.


Immunity ◽  
1995 ◽  
Vol 2 (6) ◽  
pp. 617-627 ◽  
Author(s):  
Ferenc Livak ◽  
Howard T. Petrie ◽  
I.Nicholas Crisps ◽  
David G. Schatz

2010 ◽  
Vol 95 (6) ◽  
pp. 2836-2840 ◽  
Author(s):  
Pamela Fischer-Posovszky ◽  
Julia von Schnurbein ◽  
Barbara Moepps ◽  
Georgia Lahr ◽  
Gudrun Strauss ◽  
...  

Abstract Objective: Leptin, a protein product of adipocytes, plays a critical role in the regulation of body weight, immune function, pubertal development, and fertility. So far, only three homozygous mutations in the leptin gene in a total of 13 individuals have been found leading to a phenotype of extreme obesity with marked hyperphagia and impaired immune function. Design: Serum leptin was measured by ELISA. The leptin gene (OB) was sequenced in patient DNA. The effect of the identified novel mutation was assessed using HEK293 cells. Results: We describe a 14-yr-old child of nonobese Austrian parents without known consanguinity. She had a body mass index of 31.5 kg/m2 (+2.46 sd score) and undetectable leptin serum levels. Sequencing of the leptin gene revealed a hitherto unknown homozygous transition (TTA to TCA) in exon 3 of the LEP gene resulting in a L72S replacement in the leptin protein. RT-PCR, Western blot, and immunohistochemical analysis indicated that the mutant leptin was expressed in the patient’s adipose tissue but retained within the cell. Using a heterologous cell system, we confirmed this finding and demonstrated that the side chain of Leu72 is crucial for intracellular leptin trafficking. Our patient showed signs of a hypogonadotropic hypogonadism. However, in contrast to the literature, she showed only mild obesity and a normal T cell responsiveness. Conclusions: These findings shed a new light on the clinical consequences of leptin deficiency. Congenital leptin deficiency should be considered possible in pediatric patients with mild obesity even if parents are lean and unrelated.


Author(s):  
Likai Tan ◽  
Alina Suzann Fichtner ◽  
Anja Bubke ◽  
Ivan Odak ◽  
Christian Schultze-Florey ◽  
...  

AbstractAccumulating evidence suggests that the human embryonic thymus produces distinct waves of innate effector γδ T cells. However, it is unclear whether this process comprises a dedicated subset of IL-17-producing γδ T (γδT17) cells, like reported in mice. Here we present a novel protocol for high-throughput paired γδ TCR-sequencing, which in combination with single-cell RNA-sequencing revealed a high heterogeneity of effector γδ T cell clusters. While immature γδ T cell clusters displayed mixed and diverse TCR, effector cell types in neonatal and adult blood segregated according to γδTCR usage. In adult samples, mature Vδ1+ T cells segregated into exhausted PD-1hi and active PD-1low clusters. Among Vγ9Vδ2+ T cell subsets, we identified distinct PLZF-positive effector γδ T cell clusters with innate type-1 and type-3 T cell signatures that were already detectable in a public dataset of early embryonic thymus organogenesis. Together, this suggests that functionally distinct waves of human innate effector γδ T cells including CCR6+ γδT17 cells develop in the early fetal thymus and persist into adulthood.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1685-1685
Author(s):  
Kenichiro Yata ◽  
Masahiro Abe ◽  
Asuka Oda ◽  
Hiroe Amou ◽  
Masahiro Hiasa ◽  
...  

Abstract Multiple myeloma (MM) remains incurable by conventional chemotherapies, leading to the idea to develop various forms of immunotherapies. γδ T cells are important effectors in the first-line defense against infections and tumors, and play a critical role in host defense and tumor surveillance. Aminobisphosphonates, a potent anti-resorptive agent, can effectively expand γδ T cells in vitro from peripheral blood mononuclear cells (PBMC) in combination with IL-2 in human; thus expanded γδ T cells have been demonstrated to exert potent anti-MM effects and draws considerable attention as a novel immunotherapeutic maneuver. However, in contrast to their in vitro anti-MM effects, their efficacy against MM cell growth in the bone marrow appears to be limited in patients with MM, although their clinical application is underway in MM. MM cells expands in a manner dependent on bone marrow microenvironment, in which stromal cells with defective osteoblast differentiation along with osteoclasts create a microenvironment suitable for MM cell growth and survival (a MM niche) to protect MM cells from various apoptotic insults. Because the effects of MM bone marrow microenvironment on γδ T cell activity is largely unknown, the present study was undertaken to clarify the roles of microenvironmental cells in MM bone marrow in cytotoxic activity of γδ T cells against MM cells. γδ T cells were substantially expanded (30- to 100-fold increase) when PBMC were stimulated with zoledronic acid and IL-2 for 1–2 weeks. When the γδ T cells were added exogenously to co-cultures of PBMC–derived OCs and MM cell lines (RPMI8226 and U266), γδ T cells adhered to OCs as well as MM cells and almost completely destroyed both of them, suggesting the susceptibility of OCs and MM cells to γδ T cells. Because such γδ T cell-mediated cytolysis is contact-dependent, we next explored the adhesion-mediated mechanisms. We found strong surface expression of DNAX accessory molecule-1 (DNAM-1; CD226) along with LFA-1 on γδ T cells, both of which are known as an adhesion molecule with signal transduction, and act as co-stimulatory molecules in cytotoxic T cells and NK cells. Blockade of either DNAM-1 or LFA-1 substantially reduced cytolysis of OCs as well as MM cells by γδ T cells, demonstrating their critical role as co-stimulatory molecules in γδ T cells. In contrast, the cytotoxic activity of γδ T cells against MM cells was potently attenuated in the presence of bone marrow stromal cells. Pretreatment of γδ T cells with stromal cells down-regulated interferon-γ production along with a decrease in DNAM-1 expression by γδ T cells. These results suggest that bone marrow stromal cells may be responsible for attenuation of anti-MM effects by γδT cells in vivo through directly blunting γδ T cell activity in addition to protection of MM cells from apoptosis. We and others have recently demonstrated that terminally differentiated osteblasts derived from stromal cells induce MM cell apoptosis. In contrast to stromal cells, terminally differentiated osteblasts allowed MM cell eradication by γδ T cells. Therefore, induction of terminally differentiation of osteblasts from stromal cells not only ameliorates bone lesions but also may disrupt a MM niche to confer susceptibility to γδ T cells in MM cells, which is hampered by bone marrow stromal cells.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ping Xu ◽  
Feng Zhang ◽  
Min-min Chang ◽  
Cheng Zhong ◽  
Cheng-Hong Sun ◽  
...  

Abstract Background Immune cell infiltration and neuroinflammation are heavily associated with spinal cord injury (SCI). C-C motif chemokine ligand 2/C-C chemokine receptor type 2 (CCL2/CCR2) axis has been identified as a critical role player during the invasion of immune cells to lesions in many diseases. γδ T cells, a subgroup of T cells, manage the course of inflammation response in various diseases; however, it remains unknown whether γδ T cells are recruited to injury site through CCL2/CCR2 signaling and exert the regulation effect on neuroinflammation after SCI. Methods Basso Mouse Scale (BMS), regularity index, cadence, max contact area, and motor-evoked potential testing (MEP) were measured to determine the neurological function recovery after spinal cord injury. Nissl staining was performed to identify the number of surviving motor neurons at lesion epicenter. Immunofluorescence, Western blot, enzyme-linked immunosorbent assays (ELISA), and quantitative real-time polymerase chain reaction (QRT-PCR) also were employed to evaluate the expression of associated proteins and genes. Results In this study, we demonstrated that TCRδ−/− mice present improved neurological recovery after SCI. γδ T cell recruitment to the SCI site was significantly reduced and motor functional improvement enhanced in CCL2−/− and CCR2−/− mouse strains. Furthermore, reconstitution of TCRδ−/− mice with γδ T cells extracted from CCR2−/− mice also showed similar results to CCL2 and CCR2 deficient mice. Conclusions In conclusion, γδ T cell recruitment to SCI site promotes inflammatory response and exacerbates neurological impairment. CCL2/CCR2 signaling is a vital recruitment mechanism of γδ T cells to the SCI site, and it may be taken as a novel therapeutic target for future SCI.


Sign in / Sign up

Export Citation Format

Share Document