scholarly journals Recruitment of γδ T cells to the lesion via the CCL2/CCR2 signaling after spinal cord injury

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Ping Xu ◽  
Feng Zhang ◽  
Min-min Chang ◽  
Cheng Zhong ◽  
Cheng-Hong Sun ◽  
...  

Abstract Background Immune cell infiltration and neuroinflammation are heavily associated with spinal cord injury (SCI). C-C motif chemokine ligand 2/C-C chemokine receptor type 2 (CCL2/CCR2) axis has been identified as a critical role player during the invasion of immune cells to lesions in many diseases. γδ T cells, a subgroup of T cells, manage the course of inflammation response in various diseases; however, it remains unknown whether γδ T cells are recruited to injury site through CCL2/CCR2 signaling and exert the regulation effect on neuroinflammation after SCI. Methods Basso Mouse Scale (BMS), regularity index, cadence, max contact area, and motor-evoked potential testing (MEP) were measured to determine the neurological function recovery after spinal cord injury. Nissl staining was performed to identify the number of surviving motor neurons at lesion epicenter. Immunofluorescence, Western blot, enzyme-linked immunosorbent assays (ELISA), and quantitative real-time polymerase chain reaction (QRT-PCR) also were employed to evaluate the expression of associated proteins and genes. Results In this study, we demonstrated that TCRδ−/− mice present improved neurological recovery after SCI. γδ T cell recruitment to the SCI site was significantly reduced and motor functional improvement enhanced in CCL2−/− and CCR2−/− mouse strains. Furthermore, reconstitution of TCRδ−/− mice with γδ T cells extracted from CCR2−/− mice also showed similar results to CCL2 and CCR2 deficient mice. Conclusions In conclusion, γδ T cell recruitment to SCI site promotes inflammatory response and exacerbates neurological impairment. CCL2/CCR2 signaling is a vital recruitment mechanism of γδ T cells to the SCI site, and it may be taken as a novel therapeutic target for future SCI.

2017 ◽  
Vol 215 (2) ◽  
pp. 521-535 ◽  
Author(s):  
Guodong Sun ◽  
Shuxian Yang ◽  
Guangchao Cao ◽  
Qianghua Wang ◽  
Jianlei Hao ◽  
...  

Immune responses and neuroinflammation are critically involved in spinal cord injury (SCI). γδ T cells, a small subset of T cells, regulate the inflammation process in many diseases, yet their function in SCI is still poorly understood. In this paper, we demonstrate that mice deficient in γδ T cells (TCRδ−/−) showed improved functional recovery after SCI. γδ T cells are detected at the lesion sites within 24 hours after injury and are predominantly of the Vγ4 subtype and express the inflammatory cytokine IFN-γ. Inactivating IFN-γ signaling in macrophages results in a significantly reduced production of proinflammatory cytokines in the cerebrospinal fluid (CSF) of mice with SCIs and improves functional recovery. Furthermore, treatment of SCI with anti-Vγ4 antibodies has a beneficial effect, similar to that obtained with anti–TNF-α. In SCI patients, γδ T cells are detected in the CSF, and most of them are IFN-γ positive. In conclusion, manipulation of γδ T cell functions may be a potential approach for future SCI treatment.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1685-1685
Author(s):  
Kenichiro Yata ◽  
Masahiro Abe ◽  
Asuka Oda ◽  
Hiroe Amou ◽  
Masahiro Hiasa ◽  
...  

Abstract Multiple myeloma (MM) remains incurable by conventional chemotherapies, leading to the idea to develop various forms of immunotherapies. γδ T cells are important effectors in the first-line defense against infections and tumors, and play a critical role in host defense and tumor surveillance. Aminobisphosphonates, a potent anti-resorptive agent, can effectively expand γδ T cells in vitro from peripheral blood mononuclear cells (PBMC) in combination with IL-2 in human; thus expanded γδ T cells have been demonstrated to exert potent anti-MM effects and draws considerable attention as a novel immunotherapeutic maneuver. However, in contrast to their in vitro anti-MM effects, their efficacy against MM cell growth in the bone marrow appears to be limited in patients with MM, although their clinical application is underway in MM. MM cells expands in a manner dependent on bone marrow microenvironment, in which stromal cells with defective osteoblast differentiation along with osteoclasts create a microenvironment suitable for MM cell growth and survival (a MM niche) to protect MM cells from various apoptotic insults. Because the effects of MM bone marrow microenvironment on γδ T cell activity is largely unknown, the present study was undertaken to clarify the roles of microenvironmental cells in MM bone marrow in cytotoxic activity of γδ T cells against MM cells. γδ T cells were substantially expanded (30- to 100-fold increase) when PBMC were stimulated with zoledronic acid and IL-2 for 1–2 weeks. When the γδ T cells were added exogenously to co-cultures of PBMC–derived OCs and MM cell lines (RPMI8226 and U266), γδ T cells adhered to OCs as well as MM cells and almost completely destroyed both of them, suggesting the susceptibility of OCs and MM cells to γδ T cells. Because such γδ T cell-mediated cytolysis is contact-dependent, we next explored the adhesion-mediated mechanisms. We found strong surface expression of DNAX accessory molecule-1 (DNAM-1; CD226) along with LFA-1 on γδ T cells, both of which are known as an adhesion molecule with signal transduction, and act as co-stimulatory molecules in cytotoxic T cells and NK cells. Blockade of either DNAM-1 or LFA-1 substantially reduced cytolysis of OCs as well as MM cells by γδ T cells, demonstrating their critical role as co-stimulatory molecules in γδ T cells. In contrast, the cytotoxic activity of γδ T cells against MM cells was potently attenuated in the presence of bone marrow stromal cells. Pretreatment of γδ T cells with stromal cells down-regulated interferon-γ production along with a decrease in DNAM-1 expression by γδ T cells. These results suggest that bone marrow stromal cells may be responsible for attenuation of anti-MM effects by γδT cells in vivo through directly blunting γδ T cell activity in addition to protection of MM cells from apoptosis. We and others have recently demonstrated that terminally differentiated osteblasts derived from stromal cells induce MM cell apoptosis. In contrast to stromal cells, terminally differentiated osteblasts allowed MM cell eradication by γδ T cells. Therefore, induction of terminally differentiation of osteblasts from stromal cells not only ameliorates bone lesions but also may disrupt a MM niche to confer susceptibility to γδ T cells in MM cells, which is hampered by bone marrow stromal cells.


2021 ◽  
Vol 9 (4) ◽  
pp. e002051
Author(s):  
Ryan Michael Reyes ◽  
Yilun Deng ◽  
Deyi Zhang ◽  
Niannian Ji ◽  
Neelam Mukherjee ◽  
...  

BackgroundAnti-programmed death-ligand 1 (αPD-L1) immunotherapy is approved to treat bladder cancer (BC) but is effective in <30% of patients. Interleukin (IL)-2/αIL-2 complexes (IL-2c) that preferentially target IL-2 receptor β (CD122) augment CD8+ antitumor T cells known to improve αPD-L1 efficacy. We hypothesized that the tumor microenvironment, including local immune cells in primary versus metastatic BC, differentially affects immunotherapy responses and that IL-2c effects could differ from, and thus complement αPD-L1.MethodsWe studied mechanisms of IL-2c and αPD-L1 efficacy using PD-L1+ mouse BC cell lines MB49 and MBT-2 in orthotopic (bladder) and metastatic (lung) sites.ResultsIL-2c reduced orthotopic tumor burden and extended survival in MB49 and MBT-2 BC models, similar to αPD-L1. Using antibody-mediated cell depletions and genetically T cell-deficient mice, we unexpectedly found that CD8+ T cells were not necessary for IL-2c efficacy against tumors in bladder, whereas γδ T cells, not reported to contribute to αPD-L1 efficacy, were indispensable for IL-2c efficacy there. αPD-L1 responsiveness in bladder required conventional T cells as expected, but not γδ T cells, altogether defining distinct mechanisms for IL-2c and αPD-L1 efficacy. γδ T cells did not improve IL-2c treatment of subcutaneously challenged BC or orthotopic (peritoneal) ovarian cancer, consistent with tissue-specific and/or tumor-specific γδ T cell contributions to IL-2c efficacy. IL-2c significantly altered bladder intratumoral γδ T cell content, activation status, and specific γδ T cell subsets with antitumor or protumor effector functions. Neither IL-2c nor αPD-L1 alone treated lung metastatic MB49 or MBT-2 BC, but their combination improved survival in both models. Combination treatment efficacy in lungs required CD8+ T cells but not γδ T cells.ConclusionsMechanistic insights into differential IL-2c and αPD-L1 treatment and tissue-dependent effects could help develop rational combination treatment strategies to improve treatment efficacy in distinct cancers. These studies also provide insights into γδ T cell contributions to immunotherapy in bladder and engagement of adaptive immunity by IL-2c plus αPD-L1 to treat refractory lung metastases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaohui Wang ◽  
Xiang Lin ◽  
Zihan Zheng ◽  
Bingtai Lu ◽  
Jun Wang ◽  
...  

AbstractInnate immunity is important for host defense by eliciting rapid anti-viral responses and bridging adaptive immunity. Here, we show that endogenous lipids released from virus-infected host cells activate lung γδ T cells to produce interleukin 17 A (IL-17A) for early protection against H1N1 influenza infection. During infection, the lung γδ T cell pool is constantly supplemented by thymic output, with recent emigrants infiltrating into the lung parenchyma and airway to acquire tissue-resident feature. Single-cell studies identify IL-17A-producing γδ T (Tγδ17) cells with a phenotype of TCRγδhiCD3hiAQP3hiCXCR6hi in both infected mice and patients with pneumonia. Mechanistically, host cell-released lipids during viral infection are presented by lung infiltrating CD1d+ B-1a cells to activate IL-17A production in γδ T cells via γδTCR-mediated IRF4-dependent transcription. Reduced IL-17A production in γδ T cells is detected in mice either lacking B-1a cells or with ablated CD1d in B cells. Our findings identify a local host-immune crosstalk and define important cellular and molecular mediators for early innate defense against lung viral infection.


Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 200-206 ◽  
Author(s):  
Martin Wilhelm ◽  
Volker Kunzmann ◽  
Susanne Eckstein ◽  
Peter Reimer ◽  
Florian Weissinger ◽  
...  

Abstract There is increasing evidence that γδ T cells have potent innate antitumor activity. We described previously that synthetic aminobisphosphonates are potent γδ T cell stimulatory compounds that induce cytokine secretion (ie, interferon γ [IFN-γ]) and cell-mediated cytotoxicity against lymphoma and myeloma cell lines in vitro. To evaluate the antitumor activity of γδ T cells in vivo, we initiated a pilot study of low-dose interleukin 2 (IL-2) in combination with pamidronate in 19 patients with relapsed/refractory low-grade non-Hodgkin lymphoma (NHL) or multiple myeloma (MM). The objectives of this trial were to determine toxicity, the most effective dose for in vivo activation/proliferation of γδ T cells, and antilymphoma efficacy of the combination of pamidronate and IL-2. The first 10 patients (cohort A) who entered the study received 90 mg pamidronate intravenously on day 1 followed by increasing dose levels of continuous 24-hour intravenous (IV) infusions of IL-2 (0.25 to 3 × 106 IU/m2) from day 3 to day 8. Even at the highest IL-2 dose level in vivo, γδ T-cell activation/proliferation and response to treatment were disappointing with only 1 patient achieving stable disease. Therefore, the next 9 patients were selected by positive in vitro proliferation of γδ T cells in response to pamidronate/IL-2 and received a modified treatment schedule (6-hour bolus IV IL-2 infusions from day 1-6). In this patient group (cohort B), significant in vivo activation/proliferation of γδ T cells was observed in 5 patients (55%), and objective responses (PR) were achieved in 3 patients (33%). Only patients with significant in vivo proliferation of γδ T cells responded to treatment, indicating that γδ T cells might contribute to this antilymphoma effect. Overall, administration of pamidronate and low-dose IL-2 was well tolerated. In conclusion, this clinical trial demonstrates, for the first time, that γδ T-cell–mediated immunotherapy is feasible and can induce objective tumor responses. (Blood. 2003;102:200-206)


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A119-A119
Author(s):  
Lu Bai ◽  
Kevin Nishimoto ◽  
Mustafa Turkoz ◽  
Marissa Herrman ◽  
Jason Romero ◽  
...  

BackgroundAutologous chimeric antigen receptor (CAR) T cells have been shown to be efficacious for the treatment of B cell malignancies; however, widespread adoption and application of CAR T cell products still face a number of challenges. To overcome these challenges, Adicet Bio is developing an allogeneic γδ T cell-based CAR T cell platform, which capitalizes on the intrinsic abilities of Vδ1 γδ T cells to recognize and kill transformed cells in an MHC-unrestricted manner, to migrate to epithelial tissues, and to function in hypoxic conditions. To gain a better understanding of the requirements for optimal intratumoral CAR Vδ1 γδ T cell activation, proliferation, and differentiation, we developed a three-dimensional (3D) tumor spheroid assay, in which tumor cells acquire the structural organization of a solid tumor and establish a microenvironment that has oxygen and nutrient gradients. Moreover, through the addition of cytokines and/or tumor stromal cell types, the spheroid microenvironment can be modified to reflect hot or cold tumors. Here, we report on the use of a 3D CD20+ Raji lymphoma spheroid assay to evaluate the effects of IL-2 and IL-15, positive regulators of T cell homeostasis and differentiation, on the proliferative and antitumor capacities of CD20 CAR Vδ1 γδ T cells.MethodsMolecular, phenotypic, and functional profiling were performed to characterize the in vitro dynamics of the intraspheroid CD20 CAR Vδ1 γδ T cell response to target antigen in the presence of IL-2, IL-15, or no added cytokine.ResultsWhen compared to no added cytokine, the addition of IL-2 or IL-15 enhanced CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and cytokine production in a dose-dependent manner but were only able to alter the kinetics of Raji cell killing at low effector to target ratios. Notably, differential gene expression analysis using NanoString nCounter® Technology confirmed the positive effects of IL-2 or IL-15 on CAR-activated Vδ1 γδ T cells as evidenced by the upregulation of genes involved in activation, cell cycle, mitochondrial biogenesis, cytotoxicity, and cytokine production.ConclusionsTogether, these results not only show that the addition of IL-2 or IL-15 can potentiate CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation into antitumor effectors but also highlight the utility of the 3D spheroid assay as a high throughput in vitro method for assessing and predicting CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation in hot and cold tumors.


Blood ◽  
2009 ◽  
Vol 114 (20) ◽  
pp. 4422-4431 ◽  
Author(s):  
Georg Gruenbacher ◽  
Hubert Gander ◽  
Andrea Rahm ◽  
Walter Nussbaumer ◽  
Nikolaus Romani ◽  
...  

Abstract CD56+ human dendritic cells (DCs) have recently been shown to differentiate from monocytes in response to GM-CSF and type 1 interferon in vitro. We show here that CD56+ cells freshly isolated from human peripheral blood contain a substantial subset of CD14+CD86+HLA-DR+ cells, which have the appearance of intermediate-sized lymphocytes but spontaneously differentiate into enlarged DC-like cells with substantially increased HLA-DR and CD86 expression or into fully mature CD83+ DCs in response to appropriate cytokines. Stimulation of CD56+ cells containing both DCs and abundant γδ T cells with zoledronate and interleukin-2 (IL-2) resulted in the rapid expansion of γδ T cells as well as in IFN-γ, TNF-α, and IL-1β but not in IL-4, IL-10, or IL-17 production. IFN-γ, TNF-α, and IL-1β production were almost completely abolished by depleting CD14+ cells from the CD56+ subset before stimulation. Likewise, depletion of CD14+ cells dramatically impaired γδ T-cell expansion. IFN-γ production could also be blocked by neutralizing the effects of endogenous IL-1β and TNF-α. Conversely, addition of recombinant IL-1β, TNF-α, or both further enhanced IFN-γ production and strongly up-regulated IL-6 production. Our data indicate that CD56+ DCs from human blood are capable of stimulating CD56+ γδ T cells, which may be harnessed for immunotherapy.


Sign in / Sign up

Export Citation Format

Share Document