Automated System for Three-dimensional Roughness Testing

Author(s):  
J. Rudzitis ◽  
J. Krizbergs ◽  
M. Skurba
2017 ◽  
Vol 44 (1) ◽  
pp. 62 ◽  
Author(s):  
Jonathon A. Gibbs ◽  
Michael Pound ◽  
Andrew P. French ◽  
Darren M. Wells ◽  
Erik Murchie ◽  
...  

There are currently 805 million people classified as chronically undernourished, and yet the World’s population is still increasing. At the same time, global warming is causing more frequent and severe flooding and drought, thus destroying crops and reducing the amount of land available for agriculture. Recent studies show that without crop climate adaption, crop productivity will deteriorate. With access to 3D models of real plants it is possible to acquire detailed morphological and gross developmental data that can be used to study their ecophysiology, leading to an increase in crop yield and stability across hostile and changing environments. Here we review approaches to the reconstruction of 3D models of plant shoots from image data, consider current applications in plant and crop science, and identify remaining challenges. We conclude that although phenotyping is receiving an increasing amount of attention – particularly from computer vision researchers – and numerous vision approaches have been proposed, it still remains a highly interactive process. An automated system capable of producing 3D models of plants would significantly aid phenotyping practice, increasing accuracy and repeatability of measurements.


2019 ◽  
Vol 219 (1) ◽  
pp. 129-147 ◽  
Author(s):  
M Lajaunie ◽  
J Gance ◽  
P Nevers ◽  
J-P Malet ◽  
C Bertrand ◽  
...  

SUMMARY This work presents a 3-D resistivity model of the Séchilienne unstable slope acquired with a network of portable resistivimeters in summer 2017. The instrumentation consisted in distributed measuring systems (IRIS Instruments FullWaver) to measure the spatial variations of electrical potential. 23 V-FullWaver receivers with two 50 m dipoles have been deployed over an area of circa 2 km2; the current was injected between a fixed remote electrode and a mobile electrode grounded successively at 30 locations. The data uncertainty has been evaluated in relation to the accuracy of electrodes positioning. The software package BERT (Boundless Electrical Resistivity Tomography) is used to invert the apparent resistivity and model the complex data set providing the first 3-D resistivity model of the slope. Stability tests and synthetic tests are realized to assess the interpretability of the inverted models. The 3-D resistivity model is interpreted up to a depth of 500 m; it allows identifying resistive and conductive anomalies related to the main geological and hydrogeological structures shaping the slope. The high fracturation of the rock in the most active zone of the landslide appears as a resistive anomaly where the highest resistivity values are located close to the faults. A major drain formed by a fault in the unaltered micaschist is identified through the discharge of a perched aquifer along the conductive zone producing an important conductive anomaly contrasting with the unaltered micaschist.


2019 ◽  
Vol 9 (4) ◽  
pp. 20190034 ◽  
Author(s):  
Thiranja Prasad Babarenda Gamage ◽  
Duane T. K. Malcolm ◽  
Gonzalo Maso Talou ◽  
Anna Mîra ◽  
Anthony Doyle ◽  
...  

Clinicians face many challenges when diagnosing and treating breast cancer. These challenges include interpreting and co-locating information between different medical imaging modalities that are used to identify tumours and predicting where these tumours move to during different treatment procedures. We have developed a novel automated breast image analysis workflow that integrates state-of-the-art image processing and machine learning techniques, personalized three-dimensional biomechanical modelling and population-based statistical analysis to assist clinicians during breast cancer detection and treatment procedures. This paper summarizes our recent research to address the various technical and implementation challenges associated with creating a fully automated system. The workflow is applied to predict the repositioning of tumours from the prone position, where diagnostic magnetic resonance imaging is performed, to the supine position where treatment procedures are performed. We discuss our recent advances towards addressing challenges in identifying the mechanical properties of the breast and evaluating the accuracy of the biomechanical models. We also describe our progress in implementing a prototype of this workflow in clinical practice. Clinical adoption of these state-of-the-art modelling techniques has significant potential for reducing the number of misdiagnosed breast cancers, while also helping to improve the treatment of patients.


2020 ◽  
Vol 7 (11) ◽  
pp. 201342
Author(s):  
A. E. Clark ◽  
B. Biffi ◽  
R. Sivera ◽  
A. Dall'Asta ◽  
L. Fessey ◽  
...  

Fetal craniofacial abnormalities are challenging to detect and diagnose on prenatal ultrasound (US). Image segmentation and computer analysis of three-dimensional US volumes of the fetal face may provide an objective measure to quantify fetal facial features and identify abnormalities. We have developed and tested an atlas-based partially automated facial segmentation algorithm; however, the volumes require additional manual segmentation (MS), which is time and labour intensive and may preclude this method from clinical adoption. These manually refined segmentations can then be used as a reference (atlas) by the partially automated segmentation algorithm to improve algorithmic performance with the aim of eliminating the need for manual refinement and developing a fully automated system. This study assesses the inter- and intra-operator variability of MS and tests an optimized version of our automatic segmentation (AS) algorithm. The manual refinements of 15 fetal faces performed by three operators and repeated by one operator were assessed by Dice score, average symmetrical surface distance and volume difference. The performance of the partially automatic algorithm with difference size atlases was evaluated by Dice score and computational time. Assessment of the manual refinements showed low inter- and intra-operator variability demonstrating its suitability for optimizing the AS algorithm. The algorithm showed improved performance following an increase in the atlas size in turn reducing the need for manual refinement.


2015 ◽  
Vol 5 (2) ◽  
pp. 62-79
Author(s):  
Prashant Kumar Patra ◽  
Padma Lochan Pradhan

The automated access control mechanism afforded to an automated system control in order to attain the maximum objectives of preserving the confidentiality, integrity, authentication & high availability of information system resources. The risk optimization is the process of identifying vulnerabilities, risk, uncertainties and threats to operating system resources to achieving the maximum business objectives and deciding the maximum counter measures in to optimizing the lowest level of risk. This proposed three dimensional hypercube security models and mechanism is going to be providing high level accountability for individuals who are accessing sensitive information on multiple relation functions, operation and services (RFOS) on multiple application, system software, server and network. This accountability is accomplished through access control mechanisms & services that require Confidentiality, Integrity, Authentication, Access control, Non repudiation, Availability & Privacy through operating system control and audit function. One has to develop the computer algebraic system over a relation, function, operation & services for multiple business, resources and location for risk optimization on complex real time large scale operating system. This paper contributes to the development of an optimization mechanism that objective to determine the optimal cost to be invested into security mechanisms on the measure component of the system security. Furthermore, the model optimize the cost, time & resources is supposed to optimize the system risks and maximize the business throughput and high security system. One has to develop one solution (ACM) for multiple issue which is satisfying to the pervasive and ubiquitous computing based on distributed object oriented system.


Micromachines ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 472 ◽  
Author(s):  
Yonghee Kim ◽  
Jinyeop Lee ◽  
Sungsu Park

Molecular detection of pathogens in clinical samples often requires pretreatment techniques, including immunomagnetic separation and magnetic silica-bead-based DNA purification to obtain the purified DNA of pathogens. These two techniques usually rely on handling small tubes containing a few millilitres of the sample and manual operation, implying that an automated system encompassing both techniques is needed for larger quantities of the samples. Here, we report a three-dimensional (3D)-printed millifluidic platform that enables bacterial preconcentration and genomic DNA (gDNA) purification for improving the molecular detection of target pathogens in blood samples. The device consists of two millichannels and one chamber, which can be used to preconcentrate pathogens bound to antibody-conjugated magnetic nanoparticles (Ab-MNPs) and subsequently extract gDNA using magnetic silica beads (MSBs) in a sequential manner. The platform was able to preconcentrate very low concentrations (1–1000 colony forming units (CFU)) of Escherichia coli O157:H7 and extract their genomic DNA in 10 mL of buffer and 10% blood within 30 min. The performance of the platform was verified by detecting as low as 1 CFU of E. coli O157:H7 in 10% blood using either polymerase chain reaction (PCR) with post gel electrophoresis or quantitative PCR. The results suggest that the 3D-printed millifluidic platform is highly useful for lowering the limitations on molecular detection in blood by preconcentrating the target pathogen and isolating its DNA in a large volume of the sample.


2015 ◽  
Vol 40 (3) ◽  
pp. 419-428
Author(s):  
Bartłomiej Borkowski ◽  
Marek Pluta

AbstractCurrently used procedures in room acoustics measurements are not automated. Particularly in medium-sized and large areas they require a lot of time and intensive labour which directly translates into an increase in the measurement cost. Introduction of an automated system would increase efficiency of the measurements, and therefore could present both practical and scientific benefit. The paper presents initial feasibility study for designing a system that permits the measurement of selected acoustic parameters for any choice of three-dimensional grid of measurement points throughout the volume of the room. The system will utilize an autonomous probe attached to a blimp, and will be able to measure and analyze acoustic characteristics of the rooms. The article discusses the initial choices of the system elements, starting from the general idea, through the mechanical design and control procedures, the software that controls positioning and flying of the probe, up to the automation of the measurement procedure and its possible impact on the acoustic field.


1997 ◽  
Vol 119 (1) ◽  
pp. 18-26 ◽  
Author(s):  
S. Yoshimura ◽  
J.-S. Lee ◽  
G. Yagawa

This paper describes a new automated system for analyzing the stress intensity factors (SIFs) of three-dimensional cracks. A geometry model containing one or several three-dimensional cracks is defined using a commercial CAD system, DESIGNBASE. Several local distributions of node density are chosen from the database of the present system, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-noded quadratic tetrahedral solid elements are generated by the Delaunay method. A user imposes material properties and boundary conditions onto parts of the geometry model such as loops and edges by clicking them with a mouse and by inputting values. For accurate analyses of the stress intensity factors, finer elements are generated in the vicinity of crack tips, thanks to the fuzzy knowledge processing. The singular elements such that the midpoint nodes near crack front are shifted at the quarter-points are automatically placed along the three-dimensional crack front. The complete finite element model generated is given to a commercial finite element code, MARC, and a stress analysis is performed. The stress intensity factors are calculated using the displacement extrapolation method. To demonstrate practical performances of the present system, two dissimilar semi-elliptical surface cracks in a plate subjected to uniform tension are solved, and their interaction effects are discussed in detail. It is shown from the results that ASME Boiler and Pressure Vessel Code, Section XI, Appendix A gives a conservative stress intensity factor for two identical adjacent surface cracks and for two dissimilar adjacent surface cracks.


Sign in / Sign up

Export Citation Format

Share Document