Combinatorial Optimization of Low Electrical Resistivity Pd-based Thin Film Metallic Glass

2005 ◽  
Vol 894 ◽  
Author(s):  
Ryusuke Yamauchi ◽  
Seiichi Hata ◽  
Junpei Sakurai ◽  
Akira Shimokohbe

AbstractIn order to optimize low electrical resistivity compositions of Pd-based thin film metallic glass (TFMG), Combinatorial arc plasma deposition (CAPD) was employed. A Pd-based continuous compositionally-graded thin film was deposited using CAPD in the experiments. To deposit the composition-grade of the Pd-rich thin film, the number of shots and the plasma strength were controlled. The deposited thin film was separated into 1,089 samples for measurements. The thickness, composition, phase and relative resistivity of these samples were measured respectively. And three amorphous CAPD samples exhibiting low relative resistivity were selected. To determine whether these were TFMG compositions, their compositions were reproduced on sputter-deposited samples and their Tg and Tx were measured. It was found that the sample of Pd81Cu5Si14 at.% showed the lowest absolute resistivity (60 μΩ·cm) and the largest temperature range of supercooled liquid region (SCLR) i.e., 60 K among all samples. The resistivity was 19% lower than conventional Pd-based TFMG and SCLR was two and half times as large. The tensile strength was higher than the conventional TFMG and the Young's modulus was lower than the conventional one.

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 579
Author(s):  
Ting Shi ◽  
Lanping Huang ◽  
Song Li

Structural relaxation and nanomechanical behaviors of La65Al14Ni5Co5Cu9.2Ag1.8 bulk metallic glass (BMG) with a low glass transition temperature during annealing have been investigated by calorimetry and nanoindentation measurement. The enthalpy release of this metallic glass is deduced by annealing near glass transition. When annealed below glass transition temperature for 5 min, the recovered enthalpy increases with annealing temperature and reaches the maximum value at 403 K. After annealed in supercooled liquid region, the recovered enthalpy obviously decreases. For a given annealing at 393 K, the relaxation behaviors of La-based BMG can be well described by the Kohlrausch-Williams-Watts (KWW) function. The hardness, Young’s modulus, and serrated flow are sensitive to structural relaxation of this metallic glass, which can be well explained by the theory of solid-like region and liquid-like region. The decrease of ductility and the enhancement of homogeneity can be ascribed to the transformation from liquid-like region into solid-like region and the reduction of the shear transition zone (STZ).


2007 ◽  
Vol 46 (4A) ◽  
pp. 1590-1595 ◽  
Author(s):  
Junpei Sakurai ◽  
Seiichi Hata ◽  
Ryusuke Yamauchi ◽  
Akira Shimokohbe

1999 ◽  
Vol 601 ◽  
Author(s):  
Y. Kawamura ◽  
A. Inoue

AbstractWe have investigated the flow stress and elongation of superplastic deformation in a La55Al25Ni20 (at%) metallic glass that has a wide supercooled liquid region of 72 K before crystallization. The superplasticity that appeared in the supercooled liquid region was generated by the Newtonian viscous flow that exhibits the m value of unity. The elongation to failure was restricted by the transition of the Newtonian flow to non-Newtonian one and the crystallization during deformation. We succeeded in establishing the constitutive formulation of the flow stress in the supercooled liquid region. Its formulation was expressed very well by a stretched exponential function σflow=Dε exp(H*/RT) [1-exp(E/{ε exp(H**/RT)}0.82)]. Formulations describing the elongation to failure in constant-strain-rate and constant-crosshead velocity tests were, moreover, established. It was found from the simulation that the maximum elongation in the constant-strain-rate test reached more than 106% which was two orders of magnitude larger than that in the constant-crosshead-velocity test.


2007 ◽  
Vol 22 (7) ◽  
pp. 1849-1858 ◽  
Author(s):  
Kwang Seok Lee ◽  
Jürgen Eckert ◽  
Hyun-Joon Jun ◽  
Young Won Chang

The influence of annealing on the structural changes and the mechanical properties of Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit-1) bulk metallic glass was systematically studied by varying the annealing times at 703 K. The evolution of the structural state at a relatively high temperature within the supercooled liquid region was studied by thermal analysis, x-ray diffraction, high-resolution transmission electron microscopy, extended x-ray absorption fine structure, and dilatometric measurements. The deformation behavior and the mechanical properties were also examined by carrying out hardness and compression tests for the specimens annealed for various times.


Sign in / Sign up

Export Citation Format

Share Document