Eshelby Tensor as a Tensor of Free Enthalpy

Author(s):  
Giovanni Buratti ◽  
Yongzhong Huo ◽  
Ingo Müller
Keyword(s):  
2003 ◽  
Vol 72 (1-3) ◽  
pp. 31-42 ◽  
Author(s):  
Giovanni Buratti ◽  
Yongzhong Huo ◽  
Ingo Müller
Keyword(s):  

1981 ◽  
Vol 46 (6) ◽  
pp. 1433-1438
Author(s):  
Jan Vřešťál

The conditions of the existence of extreme on the concentration dependences of absolute temperature (x are mole fractions) T = Tα(xkα) and T = Tβ(xkβ) denoting equilibrium between two binary regular solutions are generally developed under two assumptions: 1) Free enthalpy change of pure components k = i, j at transition from phase α to β is a linear function of temperature. 2) Concentration dependence of excess free enthalpy (identical with enthalpy) of solutions α and β, respectively, is described in regular model by one concentration and temperature independent parameter for each individual phase.


Author(s):  
Jochen Rau

Thermodynamic processes involve energy exchanges in the forms of work, heat, or particles. Such exchanges might be reversible or irreversible, and they might be controlled by barriers or reservoirs. A cyclic process takes a system through several states and eventually back to its initial state; it may convert heat into work (engine) or vice versa (heat pump). This chapter defines work and heat mathematically and investigates their respective properties, in particular their impact on entropy. It discusses the roles of barriers and reservoirs and introduces cyclic processes. Basic constraints imposed by the laws of thermodynamics are considered, in particular on the efficiency of a heat engine. The chapter also introduces the thermodynamic potentials: free energy, enthalpy, free enthalpy, and grand potential. These are used to describe energy exchanges and equilibrium in the presence of reservoirs. Finally, this chapter considers thermodynamic coefficients which characterize the response of a system to heating, compression, and other external actions.


1976 ◽  
Vol 31 (8) ◽  
pp. 1017-1018 ◽  
Author(s):  
H. Oehling ◽  
F. Baer

Abstract Polymethine oxonols show temperature dependent 1H-NMR-spectra because of restricted rotation of the end groups. The dependence of the value of the corresponding free enthalpy of activation AGt on the length of the poly-methine chain can be explained by the change of the π-electron contribution to ⊿G≠.


1973 ◽  
Vol 28 (9-10) ◽  
pp. 533-554 ◽  
Author(s):  
Lothar Rafflenbeul ◽  
Wa-Ming Pang ◽  
Hansjürgen Schönert ◽  
Klaus Haberle

Abstract Isopiestic vapor pressure measurements and calorimetric determination of the heat of dilution have been performed and evaluated with respect to enthalpy, entropy and free enthalpy in the ternary solutions water+ glycin+ urea and water+ alanin + urea. The free enthalpy of transfer for the process: Amino acid from water to water+ urea, which can be derived from these measurements, does not agree with the value calculated from solubility measurements. The reason for this discrepancy and the values of entropy and enthalpy in terms of hydrophobic interaction are discussed. Supplementary measurements of the proton magnetic resonance in these solutions are included.


Author(s):  
Luqun Ni ◽  
Xanthippi Markenscoff

The dynamic generalization of the celebrated Eshelby inclusion with transformation strain is the (subsonically) self-similarly expanding ellipsoidal inclusion starting from the zero dimension. The solution of the governing system of partial differential equations was obtained recently by Ni & Markenscoff (In press. J. Mech. Phys. Solids ( doi:10.1016/j.jmps.2016.02.025 )) on the basis of the Radon transformation, while here an alternative method is presented. In the self-similarly expanding motion, the Eshelby property of constant constrained strain is valid in the interior domain of the expanding ellipsoid where the particle velocity vanishes (lacuna). The dynamic Eshelby tensor is obtained in integral form. From it, the static Eshelby tensor is obtained by a limiting procedure, as the axes' expansion velocities tend to zero and time to infinity, while their product is equal to the length of the static axis. This makes the Eshelby problem the limit of its dynamic generalization.


2011 ◽  
Vol 686 ◽  
pp. 378-381
Author(s):  
Si Rong Yu ◽  
Zhi Qiu Huang ◽  
Jia An Liu

Novel AZ91D Mg alloy/fly-ash cenospheres (AZ91D/FAC) composites were fabricated by melt stir technique. The thermodynamic analyses of the interfacial reactions, the microstructure observation, and the phase analyses of the AZ91D/FAC composites were investigated. The results showed that the cenospheres were almost filled with Mg alloy matrix. In-situ MgO and Mg2Si phases were formed in Mg alloy matrix and near the interfaces between the cenospheres and Mg alloy matrix. Through the thermodynamic calculation, it can be found that the standard free enthalpy changes of these interfacial reactions are all negative at the temperature of Mg alloy melt preparation in this work, and these reactions can occur.


Sign in / Sign up

Export Citation Format

Share Document