Ice Cores from Tropical Mountain Glaciers as Archives of Climate Change

Author(s):  
Lonnie G. Thompson ◽  
Mary E. Davis ◽  
Ping-Nan Lin ◽  
Ellen Mosley-Thompson ◽  
Henry H. Brecher
Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhi-Ping Zhong ◽  
Funing Tian ◽  
Simon Roux ◽  
M. Consuelo Gazitúa ◽  
Natalie E. Solonenko ◽  
...  

Abstract Background Glacier ice archives information, including microbiology, that helps reveal paleoclimate histories and predict future climate change. Though glacier-ice microbes are studied using culture or amplicon approaches, more challenging metagenomic approaches, which provide access to functional, genome-resolved information and viruses, are under-utilized, partly due to low biomass and potential contamination. Results We expand existing clean sampling procedures using controlled artificial ice-core experiments and adapted previously established low-biomass metagenomic approaches to study glacier-ice viruses. Controlled sampling experiments drastically reduced mock contaminants including bacteria, viruses, and free DNA to background levels. Amplicon sequencing from eight depths of two Tibetan Plateau ice cores revealed common glacier-ice lineages including Janthinobacterium, Polaromonas, Herminiimonas, Flavobacterium, Sphingomonas, and Methylobacterium as the dominant genera, while microbial communities were significantly different between two ice cores, associating with different climate conditions during deposition. Separately, ~355- and ~14,400-year-old ice were subject to viral enrichment and low-input quantitative sequencing, yielding genomic sequences for 33 vOTUs. These were virtually all unique to this study, representing 28 novel genera and not a single species shared with 225 environmentally diverse viromes. Further, 42.4% of the vOTUs were identifiable temperate, which is significantly higher than that in gut, soil, and marine viromes, and indicates that temperate phages are possibly favored in glacier-ice environments before being frozen. In silico host predictions linked 18 vOTUs to co-occurring abundant bacteria (Methylobacterium, Sphingomonas, and Janthinobacterium), indicating that these phages infected ice-abundant bacterial groups before being archived. Functional genome annotation revealed four virus-encoded auxiliary metabolic genes, particularly two motility genes suggest viruses potentially facilitate nutrient acquisition for their hosts. Finally, given their possible importance to methane cycling in ice, we focused on Methylobacterium viruses by contextualizing our ice-observed viruses against 123 viromes and prophages extracted from 131 Methylobacterium genomes, revealing that the archived viruses might originate from soil or plants. Conclusions Together, these efforts further microbial and viral sampling procedures for glacier ice and provide a first window into viral communities and functions in ancient glacier environments. Such methods and datasets can potentially enable researchers to contextualize new discoveries and begin to incorporate glacier-ice microbes and their viruses relative to past and present climate change in geographically diverse regions globally.


2017 ◽  
pp. 42-52
Author(s):  
Debasis Poddar

Hindu Kush Himalayan region (hereafter the HKH) - with 3500 odd kilometres stretched in eight countries- is default resource generation hub for about one-fifth population of the world. The ecosystem-growing delicate these days- seems to play a critical role for the survival of flora and fauna along with the maintenance of all its life-sustaining mountain glaciers. Ten major rivers to carry forward hitherto sustainable development of these peoples fall into question now. Further, in the wake of global climate change today, the delicate HKH ecosystem becomes increasingly fragile to unfold manifold consequences and thereby take its toll on the population. And the same might turn apocalyptic in its magnanimity of irreversibledamage. Like time-bomb, thus, climate ticks to get blown off. As it is getting already too delayed for timely resort to safeguards, if still not taken care of in time, lawmakers ought to find the aftermath too late to lament for. Besides being conscious for climate discipline across the world, collective efforts on the part of all regional states together are imperative to minimize the damage. Therefore, each one has put hands together to be saved from the doomsday that appears to stand ahead to accelerate a catastrophicend, in the given speed of global climate change. As the largest Himalayan state and its central positioning at the top of the HKH, Nepal has had potential to play a criticalrole to engage regional climate change regime and thereby spearhead climate diplomacy worldwide to play regional capital of the HKH ecosystem. As regional superpower, India has had potential to usurp leadership avatar to this end. With reasoningof his own, the author pleads for better jurisprudence to attain regional environmental integrity inter se- rather than regional environmental integration alone- to defendthe vulnerable HKH ecosystem since the same constitutes common concern of humankind and much more so for themselves. Hence, to quote from Shakespeare, “To be or not to be, that is the question” is reasonable here. While states are engaged in the spree to cause mutually agreed destruction, global climate change- with deadly aftermath- poses the last and final unifier for them to turn United Nations in rhetoric sense o f the term.


2006 ◽  
Vol 2 (2) ◽  
pp. 145-165 ◽  
Author(s):  
V. Masson-Delmotte ◽  
G. Dreyfus ◽  
P. Braconnot ◽  
S. Johnsen ◽  
J. Jouzel ◽  
...  

Abstract. Ice cores provide unique archives of past climate and environmental changes based only on physical processes. Quantitative temperature reconstructions are essential for the comparison between ice core records and climate models. We give an overview of the methods that have been developed to reconstruct past local temperatures from deep ice cores and highlight several points that are relevant for future climate change. We first analyse the long term fluctuations of temperature as depicted in the long Antarctic record from EPICA Dome C. The long term imprint of obliquity changes in the EPICA Dome C record is highlighted and compared to simulations conducted with the ECBILT-CLIO intermediate complexity climate model. We discuss the comparison between the current interglacial period and the long interglacial corresponding to marine isotopic stage 11, ~400 kyr BP. Previous studies had focused on the role of precession and the thresholds required to induce glacial inceptions. We suggest that, due to the low eccentricity configuration of MIS 11 and the Holocene, the effect of precession on the incoming solar radiation is damped and that changes in obliquity must be taken into account. The EPICA Dome C alignment of terminations I and VI published in 2004 corresponds to a phasing of the obliquity signals. A conjunction of low obliquity and minimum northern hemisphere summer insolation is not found in the next tens of thousand years, supporting the idea of an unusually long interglacial ahead. As a second point relevant for future climate change, we discuss the magnitude and rate of change of past temperatures reconstructed from Greenland (NorthGRIP) and Antarctic (Dome C) ice cores. Past episodes of temperatures above the present-day values by up to 5°C are recorded at both locations during the penultimate interglacial period. The rate of polar warming simulated by coupled climate models forced by a CO2 increase of 1% per year is compared to ice-core-based temperature reconstructions. In Antarctica, the CO2-induced warming lies clearly beyond the natural rhythm of temperature fluctuations. In Greenland, the CO2-induced warming is as fast or faster than the most rapid temperature shifts of the last ice age. The magnitude of polar temperature change in response to a quadrupling of atmospheric CO2 is comparable to the magnitude of the polar temperature change from the Last Glacial Maximum to present-day. When forced by prescribed changes in ice sheet reconstructions and CO2 changes, climate models systematically underestimate the glacial-interglacial polar temperature change.


2019 ◽  
Vol 650 ◽  
pp. 2577-2586 ◽  
Author(s):  
D. González-Zeas ◽  
B. Erazo ◽  
P. Lloret ◽  
B. De Bièvre ◽  
S. Steinschneider ◽  
...  

2021 ◽  
Author(s):  
Florian Ritterbusch ◽  
Jinho Ahn ◽  
Ji-Qiang Gu ◽  
Wei Jiang ◽  
Giyoon Lee ◽  
...  

<p>Paleoclimate reconstructions from ice core records can be hampered due to the lack of a reliable chronology, especially when the stratigraphy is disturbed and conventional dating methods cannot be readily applied. The noble-gas radioisotopes <sup>81</sup>Kr and <sup>39</sup>Ar can in these cases provide robust constraints as they yield absolute, radiometric ages. <sup>81</sup>Kr (half-life 229 ka) covers the time span of 50-1300 ka, which is particularly relevant for polar ice cores, whereas <sup>39</sup>Ar (half-life 269 a) with a dating range of 50-1800 a is suitable for high mountain glaciers. For a long time the use of <sup>81</sup>Kr and <sup>39</sup>Ar for dating of ice samples was hampered by the lack of a detection technique that can meet its extremely small abundance at a reasonable sample size.</p><p>Here, we present <sup>81</sup>Kr and <sup>39</sup>Ar dating of Antarctic and Tibetan ice cores with the detection method Atom Trap Trace Analysis (ATTA), using 5-10 kg of ice for <sup>81</sup>Kr and 2-5 kg for <sup>39</sup>Ar. Recent advances in further decreasing the sample size and increasing the dating precision will be discussed. Current studies include <sup>81</sup>Kr dating in shallow ice cores from the Larsen Blue ice area, East Antarctica, in order to retrieve climate signals from the last glacial termination. Moreover, an <sup>39</sup>Ar profile from a central Tibetan ice core has been obtained in combination with layer counting based on isotopic and visual stratigraphic signals. The presented studies demonstrate how <sup>81</sup>Kr and <sup>39</sup>Ar can constrain the age range of ice cores and complement other methods in developing an ice core chronology.</p><p> </p><p>[1] Z.-T. Lu, Tracer applications of noble gas radionuclides in the geosciences, Earth-Science Reviews 138, 196-214, (2014)<br>[2] C. Buizert, Radiometric <sup>81</sup>Kr dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica, Proceedings of the National Academy of Sciences, <strong>111</strong>, 6876, (2014)</p><p>[3] L. Tian, <sup>81</sup>Kr Dating at the Guliya Ice Cap, Tibetan Plateau, Geophysical Research Letters, (2019)</p><p>http://atta.ustc.edu.cn</p>


2021 ◽  
Author(s):  
Dagomar Degroot

<p>This keynote presentation introduces the sources, methods, and major findings of the History of Climate and Society (HCS), a recently-coined field that uncovers the past influences of climate change on human history. It begins by offering a brief history of the field, from the eighteenth century through the present. It then describes how HCS scholars “reconstruct” past climate changes by combining what they call the “archives of nature” – paleoclimatic proxy sources such as tree rings, ice cores, or marine sediments – with the texts, stories, and ruins that constitute the “archives of society.” Next, it explains how HCS scholars in different disciplines have used distinct statistical and qualitative methods, and distinct causal frameworks, to identify the influence of climate change in the archives of society. It explores how HCS scholars conceptualize the vulnerability and resilience of past societies by introducing some telling case studies, and explaining how those case studies have grown more complex as HCS matured as a field. It then emphasizes the enduring challenges faced by HCS scholars and how, in recent months, they have been identified and are beginning to be addressed. Finally, it describes how HCS has informed climate change policy and public discourse, before offering some key lessons that policymakers can learn from the field.</p>


Sign in / Sign up

Export Citation Format

Share Document