functional genome
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 16)

H-INDEX

19
(FIVE YEARS 3)

2021 ◽  
Vol 220 (12) ◽  
Author(s):  
Adele L. Marston

Chromatin tethers to the nuclear envelope are lost during mitosis to facilitate chromosome segregation. How these connections are reestablished to ensure functional genome organization in interphase is unclear. Ptak et al. (2021. J. Cell Biol.https://doi.org/10.1083/jcb.202103036) identify a phosphorylation and SUMOylation-dependent cascade that links chromatin to the nuclear membrane during late mitosis.


Cancers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 4627
Author(s):  
Seren Carpenter ◽  
R. Steven Conlan

Functional genomics is the study of how the genome and its products, including RNA and proteins, function and interact to affect different biological processes. The field of functional genomics includes transcriptomics, proteomics, metabolomics and epigenomics, as these all relate to controlling the genome leading to expression of particular phenotypes. By studying whole genomes—clinical genomics, transcriptomes and epigenomes—functional genomics allows the exploration of the diverse relationship between genotype and phenotype, not only for humans as a species but also in individuals, allowing an understanding and evaluation of how the functional genome ‘contributes’ to different diseases. Functional variation in disease can help us better understand that disease, although it is currently limited in terms of ethnic diversity, and will ultimately give way to more personalized treatment plans.


Microbiome ◽  
2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhi-Ping Zhong ◽  
Funing Tian ◽  
Simon Roux ◽  
M. Consuelo Gazitúa ◽  
Natalie E. Solonenko ◽  
...  

Abstract Background Glacier ice archives information, including microbiology, that helps reveal paleoclimate histories and predict future climate change. Though glacier-ice microbes are studied using culture or amplicon approaches, more challenging metagenomic approaches, which provide access to functional, genome-resolved information and viruses, are under-utilized, partly due to low biomass and potential contamination. Results We expand existing clean sampling procedures using controlled artificial ice-core experiments and adapted previously established low-biomass metagenomic approaches to study glacier-ice viruses. Controlled sampling experiments drastically reduced mock contaminants including bacteria, viruses, and free DNA to background levels. Amplicon sequencing from eight depths of two Tibetan Plateau ice cores revealed common glacier-ice lineages including Janthinobacterium, Polaromonas, Herminiimonas, Flavobacterium, Sphingomonas, and Methylobacterium as the dominant genera, while microbial communities were significantly different between two ice cores, associating with different climate conditions during deposition. Separately, ~355- and ~14,400-year-old ice were subject to viral enrichment and low-input quantitative sequencing, yielding genomic sequences for 33 vOTUs. These were virtually all unique to this study, representing 28 novel genera and not a single species shared with 225 environmentally diverse viromes. Further, 42.4% of the vOTUs were identifiable temperate, which is significantly higher than that in gut, soil, and marine viromes, and indicates that temperate phages are possibly favored in glacier-ice environments before being frozen. In silico host predictions linked 18 vOTUs to co-occurring abundant bacteria (Methylobacterium, Sphingomonas, and Janthinobacterium), indicating that these phages infected ice-abundant bacterial groups before being archived. Functional genome annotation revealed four virus-encoded auxiliary metabolic genes, particularly two motility genes suggest viruses potentially facilitate nutrient acquisition for their hosts. Finally, given their possible importance to methane cycling in ice, we focused on Methylobacterium viruses by contextualizing our ice-observed viruses against 123 viromes and prophages extracted from 131 Methylobacterium genomes, revealing that the archived viruses might originate from soil or plants. Conclusions Together, these efforts further microbial and viral sampling procedures for glacier ice and provide a first window into viral communities and functions in ancient glacier environments. Such methods and datasets can potentially enable researchers to contextualize new discoveries and begin to incorporate glacier-ice microbes and their viruses relative to past and present climate change in geographically diverse regions globally.


2021 ◽  
Vol 8 ◽  
Author(s):  
Memmet Özbek ◽  
Mustafa Hitit ◽  
Abdullah Kaya ◽  
Frank Dean Jousan ◽  
Erdogan Memili

Bull fertility is an important economic trait in sustainable cattle production, as infertile or subfertile bulls give rise to large economic losses. Current methods to assess bull fertility are tedious and not totally accurate. The massive collection of functional data analyses, including genomics, proteomics, metabolomics, transcriptomics, and epigenomics, helps researchers generate extensive knowledge to better understand the unraveling physiological mechanisms underlying subpar male fertility. This review focuses on the sperm phenomes of the functional genome and epigenome that are associated with bull fertility. Findings from multiple sources were integrated to generate new knowledge that is transferable to applied andrology. Diverse methods encompassing analyses of molecular and cellular dynamics in the fertility-associated molecules and conventional sperm parameters can be considered an effective approach to determine bull fertility for efficient and sustainable cattle production. In addition to gene expression information, we also provide methodological information, which is important for the rigor and reliability of the studies. Fertility is a complex trait influenced by several factors and has low heritability, although heritability of scrotal circumference is high and that it is a known fertility maker. There is a need for new knowledge on the expression levels and functions of sperm RNA, proteins, and metabolites. The new knowledge can shed light on additional fertility markers that can be used in combination with scrotal circumference to predict the fertility of breeding bulls. This review provides a comprehensive review of sperm functional characteristics or phenotypes associated with bull fertility.


2021 ◽  
Author(s):  
Haowen Duan ◽  
Pinjing He ◽  
Liming Shao ◽  
Fan Lü
Keyword(s):  

2020 ◽  
Vol 132 (41) ◽  
pp. 18185-18191 ◽  
Author(s):  
Min Xu ◽  
Fei Zhang ◽  
Zhuo Cheng ◽  
Ghader Bashiri ◽  
Jing Wang ◽  
...  

2020 ◽  
Vol 59 (41) ◽  
pp. 18029-18035 ◽  
Author(s):  
Min Xu ◽  
Fei Zhang ◽  
Zhuo Cheng ◽  
Ghader Bashiri ◽  
Jing Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document